969 resultados para ALPHA,BETA-UNSATURATED ESTERS
Resumo:
The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.
Resumo:
Envenomation by arachnids of the genus Loxosceles leads to local dermonecrosis and serious systemic toxicity mainly induced by sphingomyelinases D (SMase D). These enzymes catalyze the hydrolysis of sphingomyelin resulting in the formation of ceramide-phosphate and choline as well as the cleavage of lysophosphatidyl choline generating the lipid mediator lysophosphatidic acid. We have, previously, cloned and expressed two functional SMase D isoforms, named P1 and P2, from Loxosceles intertnedia venom and comparative protein sequence analysis revealed that they are highly homologous to SMase I from Loxosceles laeta which folds to form an (alpha/beta)(8) barrel. In order to further characterize these proteins, pH dependence kinetic experiments and chemical modification of the two active SMases D isoforms were performed. We show here that the amino acids involved in catalysis and in the metal ion binding sites are strictly conserved in the SMase D isoforms from L. intermedia. However, the kinetic studies indicate that SMase P1 hydrolyzes sphingomyelin less efficiently than P2, which can be attributed to a substitution at position 203 (Pro-Leu) and local amino acid substitutions in the hydrophobic channel that could probably play a role in the substrate recognition and binding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.
Resumo:
Cellular immune responses to Anisakis simplex L3 antigens were investigated in BALB/c mice injected subcutaneously with a homologous crude extract (CE). Popliteal lymph nodes (PLN) were found to be increased in size and weight after A. simplex CE footpad injection. The effects of A. simplex CE in vitro proliferation were assayed with non-fractionated PLN cells or nylon-wool purified T cells derived from pooled lymph node cells of mice subcutaneously injected with CE. Spleen cells from immunized animals (antigen alone, or larva alone, or antigen plus larva) were studied by flow cytometry. The immunization induced a high proportion of CD4 + and TCR alpha beta + T cells. The number of B cells (CD45 + and TCR alpha beta-) in pre-immunized and infected mice was lower than that observed in animals subjected to infection only. The number of CD4 + T cells increased in the infected and in the pre-immunized and infected mice. In the latter, a decrease of CD8a + T cells was noted. The greatest increase in CD8a+ and TCR alpha beta- T cells was found in mice that had been subjected to infection only. Histological analysis showed that the most prominent lesions were gastric and intestinal in animals infected orally with one larva.
Resumo:
Metallographic techniques and digital image processing have been used to investigate heat-treated Ti-6Al-4V pitting corrosion, often used as aircraft components. LM and SEM metallography of 'as received', annealed (heating up to 800 degreesC/30 min and cooling furnace) and aged (heating up to 900 degreesC/30 min, quenching in water, heating up to 540 degreesC/240 min and again water-quenched) microstructures reveal pitting sites at primary and secondary alpha/beta interfaces. Microstructural arrangements influence and corrosive environment association on pit morphology could be demonstrated by digital image analysis and results statistical treatment. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes alpha, beta and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a nontransposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.
Resumo:
Haemoglobin, the 'honorary enzyme' [Brunori (1999), Trends Biochem. Sci. 24, 158-161], constitutes a prime prototype for allosteric models. Here, the crystallization and preliminary X-ray analysis of haemoglobin I from the South American fish Brycon cephalus are reported. X-ray diffraction data have been collected to 2.5 Angstrom resolution using synchrotron radiation (LNLS). Crystals were determined to belong to the space group P6(1)22 and preliminary structural analysis revealed the presence of one dimer (alpha beta) in the asymmetric unit. The structure was determined using standard molecular-replacement techniques.
Resumo:
Esterases are known for their involvement in several physiological processes and high degree of polymorphism, in many organisms. Such polymorphism has been used to characterize species and species groups and to study genetic changes occurred in their evolutionary history. In the present study, the esterase patterns of 19 strains from 10 species representative of the five subgroups of the saltans species group were analyzed using polyacrylamide gel electrophoresis and alpha- and beta- naphthyl acetates as substrates. Fifty-one esterase bands were detected and classified as 31 alpha-esterases, 18 beta-esterases and two alpha/beta-esterases. on the basis of the inhibition patterns using Malathion and eserine sulfate, 34 bands were classified as carboxylesterases, 14 as acethylesterases and three as cholinesterases. Ten gene loci were tentatively established on the basis of data on band position in the gel, substrate preference and inhibition pattern. Twenty bands were species-specific, the remaining being shared by species from the same or different subgroups. Bands detected exclusively in males and bands with a different frequency or degree of expression between sexes were also detected. In the gels prepared for analysis of gene expression in the body parts (head, thorax and abdomen), the degree of expression of the beta-esterases was higher in the thorax, while the alpha-esterases were expressed predominantly in the abdomen and thorax. A global view of the data available at present on the esterases of the species from the saltans group and their degree of polymorphism are presented, as well as the possibility of using some beta-esterases, because of their characteristics in the gels, as markers for species identification.
Resumo:
Background: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings. ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis. © 2013 Colombo et al.; licensee BioMed Central Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Fisiológicas - FOAR
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the alpha+beta class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1M GuHCl), streblin exists in a partially unfolded state with characteristics of amolten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)