995 resultados para 93-603


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling at Sites 534 and 603 of the Deep Sea Drilling Project recovered thick sections of Berriasian through Aptian white limestones to dark gray marls, interbedded with claystone and clastic turbidites. Progressive thermal demagnetization removed a normal-polarity overprint carried by goethite and/or pyrrhotite. The resulting characteristic magnetization is carried predominantly by magnetite. Directions and reliability of characteristic magnetization of each sample were computed by using least squares line-fits of magnetization vectors. The corrected true mean inclinations of the sites suggest that the western North Atlantic underwent approximately 6° of steady southward motion between the Berriasian and Aptian stages. The patterns of magnetic polarity of the two sites, when plotted on stratigraphic columns of the pelagic sediments without turbidite beds, display a fairly consistent magnetostratigraphy through most of the Hauterivian-Barremian interval, using dinoflagellate and nannofossil events and facies changes in pelagic sediment as controls on the correlations. The composite magnetostratigraphy appears to include most of the features of the M-sequence block model of magnetic anomalies from Ml to Ml ON (Barremian-Hauterivian) and from M16 to M23 (Berriasian-Tithonian). The Valanginian magnetostratigraphy of the sites does not exhibit reversed polarity intervals corresponding to Ml 1 to M13 of the M-sequence model; this may be the result of poor magnetization, of a major unrecognized hiatus in the early to middle Valanginian in the western North Atlantic, or of an error in the standard block model. Based on these tentative polarity-zone correlations, the Hauterivian/Barremian boundary occurs in or near the reversed-polarity Chron M7 or M5, depending upon whether the dinoflagellate or nannofossil zonation, respectively, is used; the Valanginian/Hauterivian boundary, as defined by the dinoflagellate zonation, is near reversed-polarity Chron M10N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of the clay mineralogy of Cenozoic sediment samples from Deep Sea Drilling Project Sites 604 and 605 on the upper continental rise off New Jersey indicates that sediment deposition of two different clay mineral facies has occurred. These sites are marked by Paleogene deposition of illite with subordinate kaolinite and smectite covarying in inverse proportion, and by Neogene deposition dominated by illite with subordinate kaolinite and chlorite. Leg 93 results agree with the clay mineral facies proposed by Hathaway (1972), which defined a "Northern facies" consisting of illite and chlorite, with feldspar and hornblende, from erosion of rocks north of Cape Hatteras, and a "Southern facies" composed of smectite, kaolinite, and mixed-layer illite-smectites. Neogene and Quaternary sediments at Sites 604 and 605 contain the "Northern facies," and Paleogene sediments contain the "Southern facies" minerals. Feldspar is exclusively found in Neogene-Quaternary sediments, as is the majority of the amphibole found in these samples. Widespread Paleogene volcanic source materials are suggested by the presence of smectite throughout the early Paleocenemiddle Eocene sediments recovered at Site 605. The clay mineral stratigraphy at Leg 93 sites is comparable to the record at nearby DSDP sites on the lower continental rise and abyssal plain of the northwestern Atlantic (DSDP Sites 388, 105, and 106), and also with the sediments recovered by drilling on the Mazagan Plateau off northwestern Morocco (DSDP Sites 544-547) in the eastern North Atlantic.