999 resultados para 74-525


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty sediment and four basement basalt samples from DSDP Hole 525A, Leg 74, as well as nine basalt samples from southern and offshore Brazil, were subjected to instrumental neutron activation analysis. Thirty-two major, minor, and trace elements were determined. The downcore element concentration profiles and regression analyses show that the rare earth elements (REE) are present in significant amounts in both the carbonate and noncarbonate phases in sediments; Sr is concentrated in the carbonate phase, and most of the other elements determined exist mainly in the noncarbonate phase. The calculated partition coefficients of the REE between the carbonate phase and the free ion concentrations in seawater are high and increase with decreasing REE ionic radii from 3.9 x 10**6 for La to 15 x 10**6 for Lu. Calculations show that the lanthanide concentrations in South Atlantic seawater have not been changed significantly over the past 70 Ma. The Ce anomaly observed in the carbonate phase is a redox indicator of ancient seawater. Study of the Ce anomaly reveals that seawater was anoxic over the Walvis Ridge during the late Campanian. As the gap between South America and West Africa widened and the Walvis Ridge subsided from late Campanian to late Paleocene times, the water circulation of the South Atlantic improved and achieved oxidation conditions about 54 Ma that are similar to present seawater redox conditions in the world oceans. The chemical compositions of the basement rocks correspond to alkalic basalts, not mid-ocean ridge basalts (MORBs). The results add more evidence to support the hypothesis that the Walvis Ridge was formed by a series of volcanos moving over a "hot spot" near the Mid-Atlantic Ridge. From the chemical composition and REE pattern, one 112 Ma old basalt on the Brazilian continental shelf has been identified as an early stage MORB. To date, this is the oldest oceanic tholeiite recovered from the South Atlantic. This direct evidence indicates that the continental split between South America and Africa commenced > 112 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the late Paleocene to early Eocene, deep sea benthic foraminifera suffered their only global extinction of the last 75 million years and diversity decreased worldwide by 30-50% in a few thousand years. At Maud Rise (Weddell Sea, Antarctica; Sites 689 and 690, palaeodepths 1100 m and 1900 m) and Walvis Ridge (Southeastern Atlantic, Sites 525 and 527, palaeodepths 1600 m and 3400 m) post-extinction faunas were low-diversity and high-dominance, but the dominant species differed by geographical location. At Maud Rise, post-extinction faunas were dominated by small, biserial and triserial species, while the large, thick-walled, long-lived deep sea species Nuttallides truempyi was absent. At Walvis Ridge, by contrast, they were dominated by long-lived species such as N. truempyi, with common to abundant small abyssaminid species. The faunal dominance patterns at the two locations thus suggest different post-extinction seafloor environments: increased flux of organic matter and possibly decreased oxygen levels at Maud Rise, decreased flux at Walvis Ridge. The species-richness remained very low for about 50 000 years, then gradually increased. The extinction was synchronous with a large, negative, short-term excursion of carbon and oxygen isotopes in planktonic and benthic foraminifera and bulk carbonate. The isotope excursions reached peak negative values in a few thousand years and values returned to pre-excursion levels in about 50 000 years. The carbon isotope excursion was about -2 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, and about -4 per mil for planktonic foraminifera at Maud Rise. At the latter sites vertical gradients thus decreased, possibly at least partially as a result of upwelling. The oxygen isotope excursion was about -1.5 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, -1 per mil for planktonic foraminifera at Maud Rise. The rapid oxygen isotope excursion at a time when polar ice-sheets were absent or insignificant can be explained by an increase in temperature by 4-6°C of high latitude surface waters and deep waters world wide. The deep ocean temperature increase could have been caused by warming of surface waters at high latitudes and continued formation of the deep waters at these locations, or by a switch from dominant formation of deep waters at high latitudes to formation at lower latitudes. Benthic foraminiferal post-extinction biogeographical patterns favour the latter explanation. The short-term carbon isotope excursion occurred in deep and surface waters, and in soil concretions and mammal teeth in the continental record. It is associated with increased CaC03-dissolution over a wide depth range in the oceans, suggesting that a rapid transfer of isotopically light carbon from lithosphere or biosphere into the ocean-atmosphere system may have been involved. The rapidity of the initiation of the excursion (a few thousand years) and its short duration (50 000 years) suggest that such a transfer was probably not caused by changes in the ratio of organic carbon to carbonate deposition or erosion. Transfer of carbon from the terrestrial biosphere was probably not the cause, because it would require a much larger biosphere destruction than at the end of the Cretaceous, in conflict with the fossil record. It is difficult to explain the large shift by rapid emission into the atmosphere of volcanogenic CO2, although huge subaerial plateau basalt eruptions occurred at the time in the northern Atlantic. Probably a complex combination of processes and feedback was involved, including volcanogenic emission of CO2, changing circulation patterns, changing productivity in the oceans and possibly on land, and changes in the relative size of the oceanic and atmospheric carbon reservoirs.