363 resultados para 409000
Resumo:
Radiolabeled products were formed from labeled substrates during anaerobic incubation of sediments from Sites 618, 619, and 622. One set of experiments formed 14CO2, 14CH4, and 35SH2 from 2-14C-acetate and 35S-sulfate; a second set formed 14CH4 from 14C-methylamine or 14C-trimethylamine. Levels of 14CO2 and 35S2 formed were two to three orders of magnitude greater than 14CH4. Production of 14CH4 by Deep Sea Drilling Project (DSDP) sediments was four to five orders of magnitude less than that formed by anoxic San Francisco Bay sediment. However, incubation of Site 622 sediment slurries under H2 demonstrated production of small quantities of CH4. These results indicate that DSDP sediments recovered from 4 to 167 m sub-bottom (age 85,000-110,000 yr.) harbor potential microbial activity which includes sulfate reducers and methanogens. Analysis of pore waters from these DSDP sites indicates that bacterial substrates (acetate, methylated amines) were present.
Resumo:
Site 619, located in the Pigmy Basin off the coast of Louisiana, penetrated the late Quaternary Ericson Zones X, Y, and Z. The penetrated section can be divided into four intervals. The lower interval (below 157 m sub-bottom) comprises 51 m of displaced sediments which probably originated from the Louisiana continental shelf. The upper three intervals (above 157 m) are dominated by pelagic/hemipelagic sedimentation associated with a closed basin. These are divided on the basis of planktonic foraminifers into Zones X, Y, and Z. These warm-cool water intervals are identified mainly by using the Globorotalia menardii complex (warm) and G. inflata (cool). The intervals correlate with published curves taken from piston core samples in the western Gulf of Mexico.
Resumo:
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.
Resumo:
A molecular organic geochemical proxy (TEX86) for sea surface temperature (SST) is compared with a foraminifera-based SST proxy (Mg/Ca) in a decadal-resolution marine sedimentary record spanning the last 1000 years from the Gulf of Mexico. We assess the relative strengths of the organic and inorganic paleoceanographic techniques for reconstructing high-resolution SST variability during recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period (MWP). SST estimates based on the molecular organic proxy TEX86 show a similar magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates but with some important differences. For instance, both proxies show a cooling (1°C-2°C) of Gulf of Mexico SSTs during the LIA. During the MWP, however, Mg/Ca-SSTs are similar to near-modern SSTs, while TEX86 indicates SSTs that were cooler than modern. Using the respective SST calibrations for each proxy results in TEX86-SST estimates that are 2°C-4°C warmer than Mg/Ca-SST throughout the 1000 year record. We interpret the TEX86-SST as a summer-weighted SST signal from the upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST. Downcore differences in the SST estimates between the two proxies (DeltaT = TEX86 - Mg/Ca) are interpreted in the context of varying seasonality and/or changing water column temperature gradients.