944 resultados para 3D object detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a framework for building virtual collections of several digital objects and presenting them in an interactive 3D environment, rendered in a web browser. Using that environment, the website visitor can examine a given collection from a first-person perspective by walking around and inspecting each object in detail by viewing it from any angle. The rendering and visualization of the models is done solely by the web browser with the use of HTML5 and the Three.js JavaScript library, without any additional requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questa tesi si occupa dell’estensione di un framework software finalizzato all'individuazione e al tracciamento di persone in una scena ripresa da telecamera stereoscopica. In primo luogo è rimossa la necessità di una calibrazione manuale offline del sistema sfruttando algoritmi che consentono di individuare, a partire da un fotogramma acquisito dalla camera, il piano su cui i soggetti tracciati si muovono. Inoltre, è introdotto un modulo software basato su deep learning con lo scopo di migliorare la precisione del tracciamento. Questo componente, che è in grado di individuare le teste presenti in un fotogramma, consente ridurre i dati analizzati al solo intorno della posizione effettiva di una persona, escludendo oggetti che l’algoritmo di tracciamento sarebbe portato a individuare come persone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photometric Stereo is a powerful image based 3D reconstruction technique that has recently been used to obtain very high quality reconstructions. However, in its classic form, Photometric Stereo suffers from two main limitations: Firstly, one needs to obtain images of the 3D scene under multiple different illuminations. As a result the 3D scene needs to remain static during illumination changes, which prohibits the reconstruction of deforming objects. Secondly, the images obtained must be from a single viewpoint. This leads to depth-map based 2.5 reconstructions, instead of full 3D surfaces. The aim of this Chapter is to show how these limitations can be alleviated, leading to the derivation of two practical 3D acquisition systems: The first one, based on the powerful Coloured Light Photometric Stereo method can be used to reconstruct moving objects such as cloth or human faces. The second, permits the complete 3D reconstruction of challenging objects such as porcelain vases. In addition to algorithmic details, the Chapter pays attention to practical issues such as setup calibration, detection and correction of self and cast shadows. We provide several evaluation experiments as well as reconstruction results. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Head motion during a Positron Emission Tomography (PET) brain scan can considerably degrade image quality. External motion-tracking devices have proven successful in minimizing this effect, but the associated time, maintenance, and workflow changes inhibit their widespread clinical use. List-mode PET acquisition allows for the retroactive analysis of coincidence events on any time scale throughout a scan, and therefore potentially offers a data-driven motion detection and characterization technique. An algorithm was developed to parse list-mode data, divide the full acquisition into short scan intervals, and calculate the line-of-response (LOR) midpoint average for each interval. These LOR midpoint averages, known as “radioactivity centroids,” were presumed to represent the center of the radioactivity distribution in the scanner, and it was thought that changes in this metric over time would correspond to intra-scan motion.

Several scans were taken of the 3D Hoffman brain phantom on a GE Discovery IQ PET/CT scanner to test the ability of the radioactivity to indicate intra-scan motion. Each scan incrementally surveyed motion in a different degree of freedom (2 translational and 2 rotational). The radioactivity centroids calculated from these scans correlated linearly to phantom positions/orientations. Centroid measurements over 1-second intervals performed on scans with ~1mCi of activity in the center of the field of view had standard deviations of 0.026 cm in the x- and y-dimensions and 0.020 cm in the z-dimension, which demonstrates high precision and repeatability in this metric. Radioactivity centroids are thus shown to successfully represent discrete motions on the submillimeter scale. It is also shown that while the radioactivity centroid can precisely indicate the amount of motion during an acquisition, it fails to distinguish what type of motion occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’automatisation de la détection et de l’identification des animaux est une tâche qui a de l’intérêt dans plusieurs domaines de recherche en biologie ainsi que dans le développement de systèmes de surveillance électronique. L’auteur présente un système de détection et d’identification basé sur la vision stéréo par ordinateur. Plusieurs critères sont utilisés pour identifier les animaux, mais l’accent a été mis sur l’analyse harmonique de la reconstruction en temps réel de la forme en 3D des animaux. Le résultat de l’analyse est comparé avec d’autres qui sont contenus dans une base évolutive de connaissances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Les photodiodes à avalanche monophotonique (SPAD) sont d'intérêts pour les applications requérant la détection de photons uniques avec une grande résolution temporelle, comme en physique des hautes énergies et en imagerie médicale. En fait, les matrices de SPAD, souvent appelés photomultiplicateurs sur silicium (SiPM), remplacent graduellement les tubes photomultiplicateurs (PMT) et les photodiodes à avalanche (APD). De plus, il y a une tendance à utiliser les matrices de SPAD en technologie CMOS afin d'obtenir des pixels intelligents optimisés pour la résolution temporelle. La fabrication de SPAD en technologie CMOS commerciale apporte plusieurs avantages par rapport aux procédés optoélectroniques comme le faible coût, la capacité de production, l'intégration d'électronique et la miniaturisation des systèmes. Cependant, le défaut principal du CMOS est le manque de flexibilité de conception au niveau de l'architecture du SPAD, causé par le caractère fixe et standardisé des étapes de fabrication en technologie CMOS. Un autre inconvénient des matrices de SPAD CMOS est la perte de surface photosensible amenée par la présence de circuits CMOS. Ce document présente la conception, la caractérisation et l'optimisation de SPAD fabriqués dans une technologie CMOS commerciale (Teledyne DALSA 0.8µm HV CMOS - TDSI CMOSP8G). Des modifications de procédé sur mesure ont été introduites en collaboration avec l'entreprise CMOS pour optimiser les SPAD tout en gardant la compatibilité CMOS. Les matrices de SPAD produites sont dédiées à être intégrées en 3D avec de l'électronique CMOS économique (TDSI) ou avec de l'électronique CMOS submicronique avancée, produisant ainsi un SiPM 3D numérique. Ce SiPM 3D innovateur vise à remplacer les PMT, les APD et les SiPM commerciaux dans les applications à haute résolution temporelle. L'objectif principal du groupe de recherche est de développer un SiPM 3D avec une résolution temporelle de 10 ps pour usage en physique des hautes énergies et en imagerie médicale. Ces applications demandent des procédés fiables avec une capacité de production certifiée, ce qui justifie la volonté de produire le SiPM 3D avec des technologies CMOS commerciales. Ce mémoire étudie la conception, la caractérisation et l'optimisation de SPAD fabriqués en technologie TDSI-CMOSP8G.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the estimation of object boundaries from a set of 3D points. An extension of the constrained clustering algorithm developed by Abrantes and Marques in the context of edge linking is presented. The object surface is approximated using rectangular meshes and simplex nets. Centroid-based forces are used for attracting the model nodes towards the data, using competitive learning methods. It is shown that competitive learning improves the model performance in the presence of concavities and allows to discriminate close surfaces. The proposed model is evaluated using synthetic data and medical images (MRI and ultrasound images).