998 resultados para 350.2
Resumo:
Orbital tuning of benthic d18O is a common approach for assigning ages to ocean sediment records. Similar environmental forcing of the northern South China Sea and the southeast Asian cave regions allows for transfer of the speleothem d18O radiometric chronology to the planktonic and benthic d18O records from Ocean Drilling Program Site 1146, yielding a new chronology with 41 radiometrically calibrated datums, spanning the past 350 kyr. This approach also provides for an independent assessment of the accuracy of the orbitally tuned benthic d18O chronology for the last 350 kyr. The largest differences relative to the latest chronology occur in marine isotope stages (MIS) 5.4, 5.5, 6, 7, and 9.3. Prominent suborbital-scale structure believed to be global in nature is identified within MIS 5.4 and MIS 7.2. On the basis of the radiometrically calibrated chronology, the time constant of the ice sheet is found to be 5.4 kyr at the precession band (light d18O lags precession minima by -55.4°) and 10.4 kyr at the obliquity band (light d18O lags obliquity maxima by 57.4°). These values are significantly shorter than the single 17 kyr time constant originally estimated by Imbrie et al. (1984), based primarily on the timing of terminations I and II and the 15 kyr time constant used by Lisiecki and Raymo (2005, doi:10.1029/2004PA001071).
Resumo:
1901-1907: 2 nos. a year, the 2d being a summary for the season; 1911-13 published monthly in folio sheets without numbers.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
Hearings held Feb. 17 to Mar. 10, 1960.
Resumo:
"Index by general categories, pts. 1-4" issued seperately.
Resumo:
Robert L. Doughton, chairman.
Resumo:
1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA 2 of 9.95 although the slope of the Schild plot (1.37±0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA 2 of 9.25 and a Schild slope of 0.89±0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP 8-37 had a significantly lower pA 2 than on SK-N-MC cells (7.34±0.19 (n=7) compared to 8.35±0.18, (n=6)). BIBN4096BS had a pA 2 of 9.98 and a Schild plot slope of 0.86±0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 μM. CGRP 8-37 had a pA 2 of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competive' behaviour. At concentrations of up to 10 μM, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP 8-37.
Resumo:
Unrepeatered 115.6 Gbit/s per channel WDM DP-QPSK transmission with novel URFL based amplification is demonstrated. Transmission of 1.4 Tb/s was possible in 350 km link and 2.2 Tb/s was achieved in 325 km without employing ROPA or speciality fibres.
Resumo:
Stable isotope (SI) ratios of carbon (d13C) and nitrogen (d15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, d13C was corrected using a lipid-normalisation model. d15N signals ranged from 3.0-6.9 per mil in mesopelagic species to 7.0-9.5 per mil in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower d15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher d13C and d15N values than specimens at the eastern stations. These longitudinal changes in d13C and d15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.
Resumo:
The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.
Resumo:
During Ice Station POLarstern (ISPOL; R.V. Polarstern cruise ANT XXII/2, November 2004-January 2005), hydrographic and tracer observations were obtained in the western Weddell Sea while drifting closely in front of the Larsen Ice Shelf. These observations indicate recently formed Weddell Sea Bottom Water, which contains significant contributions of glacial melt water in its upper part, and High-Salinity Shelf Water in its lower layer. The formation of this bottom water cannot be related to the known sources in the south, the Filchner-Ronne Ice Shelf. We show that this bottom water is formed in the western Weddell Sea, most likely in interaction with the Larsen C Ice Shelf. By applying an Optimum Multiparameter Analysis (OMP) using temperature, salinity, and noble gas observations (helium isotopes and neon), we obtained mean glacial melt-water fractions of about 0.1% in the bottom water. On sections across the Weddell Gyre farther north, melt-water fractions are still on the order of 0.04%. Using chlorofluorocarbons (CFCs) as age tracers, we deduced a mean transit time between the western source and the bottom water found on the slope toward the north (9±3 years). This transit time is larger and the inferred transport rate is small in comparison to previous findings. But accounting for a loss of the initially formed bottom water volume due to mixing and renewal of Weddell Sea Deep Water, a formation rate of 1.1±0.5 Sv in the western Weddell Sea is plausible. This implies a basal melt rate of 35±19 Gt/year or 0.35±0.19 m/year at the Larsen Ice Shelf. This bottom water is shallow enough that it could leave the Weddell Basin through the gaps in the South Scotia Ridge to supply Antarctic Bottom Water. These findings emphasize the role of the western Weddell Sea in deep- and bottom-water formation, particularly in view of changing environmental conditions due to climate variability, which might induce enhanced melting or even decay of ice shelves.