769 resultados para 321404 Sport and Exercise Psychology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The current study investigated to what extent task-specific practice can help reduce the adverse effects of high-pressure on performance in a simulated penalty kick task. Based on the assumption that practice attenuates the required attentional resources, it was hypothesized that task-specific practice would enhance resilience against high-pressure. Method Participants practiced a simulated penalty kick in which they had to move a lever to the side opposite to the goalkeeper's dive. The goalkeeper moved at different times before ball-contact. Design Before and after task-specific practice, participants were tested on the same task both under low- and high-pressure conditions. Results Before practice, performance of all participants worsened under high-pressure; however, whereas one group of participants merely required more time to correctly respond to the goalkeeper movement and showed a typical logistic relation between the percentage of correct responses and the time available to respond, a second group of participants showed a linear relationship between the percentage of correct responses and the time available to respond. This implies that they tended to make systematic errors for the shortest times available. Practice eliminated the debilitating effects of high-pressure in the former group, whereas in the latter group high-pressure continued to negatively affect performance. Conclusions Task-specific practice increased resilience to high-pressure. However, the effect was a function of how participants responded initially to high-pressure, that is, prior to practice. The results are discussed within the framework of attentional control theory (ACT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speeding the VO2 kinetics results in a reduction of the O2 deficit. Two factors might determine VO2 kinetics: oxygen delivery to muscle (Tschakovsky and Hughson 1999) and a muscle 'metabolic inertia' (Grassi et al. 1996). Therefore, in study 1 we investigated VO2 kinetics and cardiovascular system adaptations during step exercise transitions in different regions of the moderate domain. In study 2 we investigated muscle oxygenation and cardio-pulmonary adaptations during step exercise tests before, after and over a period of training. Study 1 methods: Seven subjects (26 ± 8 yr; 176 ± 5 cm; 69 ± 6 kg) performed 4 types of step transition from rest (0-50W; 0-100W) or elevate baseline (25-75W; 25-125W). GET and VO2max were assessed before testing. O2 uptake and were measured during testing. Study 2 methods: 10 subjects (25 ± 4 yr; 175 ± 9 cm; 71 ± 12 kg) performed a step transition test (0 to 100 W) before, after and during 4 weeks of endurance training (ET). VO2max and GET were assessed before and after of ET (40 minutes, 3 times a week, 60% O2max). VO2 uptake, Q and deoxyheamoglobin were measured during testing. Study 1 results: VO2 τ and the functional gain were slower in the upper regions of the moderate domain. Q increased more abruptly during rest to work condition. Q τ was faster than VO2 τ for each exercise step. Study 2 results: VO2 τ became faster after ET (25%) and particularly after 1 training session (4%). Q kinetics changed after 4 training sessions nevertheless it was always faster than VO2 τ. An attenuation in ∆[HHb] /∆VO2 was detectible. Conclusion: these investigations suggest that muscle fibres recruitment exerts a influence on the VO2 response within the moderate domain either during different forms of step transition or following ET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac patients after an acute event and/or with chronic heart disease deserve special attention to restore their quality of life and to maintain or improve functional capacity. They require counselling to avoid recurrence through a combination of adherence to a medication plan and adoption of a healthy lifestyle. These secondary prevention targets are included in the overall goal of cardiac rehabilitation (CR). Cardiac rehabilitation can be viewed as the clinical application of preventive care by means of a professional multi-disciplinary integrated approach for comprehensive risk reduction and global long-term care of cardiac patients. The CR approach is delivered in tandem with a flexible follow-up strategy and easy access to a specialized team. To promote implementation of cardiac prevention and rehabilitation, the CR Section of the EACPR (European Association of Cardiovascular Prevention and Rehabilitation) has recently completed a Position Paper, entitled 'Secondary prevention through cardiac rehabilitation: A condition-oriented approach'. Components of multidisciplinary CR for seven clinical presentations have been addressed. Components include patient assessment, physical activity counselling, exercise training, diet/nutritional counselling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management. Cardiac rehabilitation services are by definition multi-factorial and comprehensive, with physical activity counselling and exercise training as central components in all rehabilitation and preventive interventions. Many of the risk factor improvements occurring in CR can be mediated through exercise training programmes. This call-for-action paper presents the key components of a CR programme: physical activity counselling and exercise training. It summarizes current evidence-based best practice for the wide range of patient presentations of interest to the general cardiology community.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess the safety and cardiopulmonary adaptation to high altitude exposure among patients with coronary artery disease. METHODS: 22 patients (20 men and 2 women), mean age 57 (SD 7) years, underwent a maximal, symptom limited exercise stress test in Bern, Switzerland (540 m) and after a rapid ascent to the Jungfraujoch (3454 m). The study population comprised 15 patients after ST elevation myocardial infarction and 7 after a non-ST elevation myocardial infarction 12 (SD 4) months after the acute event. All patients were revascularised either by percutaneous coronary angioplasty (n = 15) or by coronary artery bypass surgery (n = 7). Ejection fraction was 60 (SD 8)%. beta blocking agents were withheld for five days before exercise testing. RESULTS: At 3454 m, peak oxygen uptake decreased by 19% (p < 0.001), maximum work capacity by 15% (p < 0.001) and exercise time by 16% (p < 0.001); heart rate, ventilation and lactate were significantly higher at every level of exercise, except at maximum exertion. No ECG signs of myocardial ischaemia or significant arrhythmias were noted. CONCLUSIONS: Although oxygen demand and lactate concentrations are higher during exercise at high altitude, a rapid ascent and submaximal exercise can be considered safe at an altitude of 3454 m for low risk patients six months after revascularisation for an acute coronary event and a normal exercise stress test at low altitude.