952 resultados para 2glycosidic-isoprenoid-glycerol dibiphytanyl nonitol tetraether


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-step thermal extrusion process has been investigated for the modification of starch with alcohol in order to improve the film properties. Unmodified starch/glycerol mixtures containing Methanol (MetOH), ethanol (EtOH) and their combinations (5, 10 and 15 wt%) were thermally extruded to produce thermoplastic. The final hot-pressed film showed increased stiffness and crystallinity, while having decreased moisture uptake due to oxidation and alcohol complexing molecular interactions. The Young’s Modulus, tensile strength and elongation at break increased by 60%, 15% and 32% respectively, for 5 wt% MetOH derived film, compared to the control. The film moisture content was reduced by up to 15 wt% for 5 wt% EtOH-derived film. Generally the crystallinity increased in the alcohol-derived films due to an increased complexing of alcohol with starch forming the VH polymorph. Fourier transform infra-red (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopic analysis were used to discuss the molecular interactions between the starch and alcohol molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Saline extract of sheep pancreas acetone-dried powder was shown to catalyse acyl ester hydrolysis of spinach leaf galactosyl diglycerides and also galactosylglucosyl diglyceride of Lactobacillus casei. 2. Sodium deoxycholate stimulated the enzyme activity. Ca2+ had no effect on the hydrolysis of monogalactosyl diglyceride, but it enhanced that of digalactosyl diglyceride. When added together, there was considerably less activity with both the substrates. 3. Optimal hydrolysis was observed at pH7.2. 4. The initial point of hydrolysis was at position-1, leading to the formation of monogalactosyl monoglyceride and digalactosyl monoglyceride. Further hydrolysis to the corresponding galactosylglycerols and later to galactose and glycerol was also observed, indicating the presence of a- and b-galactosidases in the enzyme preparation. 5. Formation of monogalactosyl diglyceride from digalactosyl diglyceride by the action of a-galactosidase was noted. 6. Monogalactosyl diglyceride was also hydrolysed by b-galactosidase to a limited extent, giving rise to diacylglycerol and galactose. 7. Attempts at purification of monogalactosyl diglyceride acyl hydrolase by using protamine sulphate treatment, Sephadex G-100 filtration and DEAE-cellulose chromatography gave a partially purified enzyme which showed 9- and 81-fold higher specific activity towards monogalactosyl diglyceride and digalactosyl diglyceride respectively. This still showed acyl ester hydrolysis activity towards methyl oleate, phosphatidylcholine and triacylglycerol. 8. When sheep, rat and guinea-pig tissues were compared, guinea-pig tissues showed the highest activity towards both monogalactosyl diglyceride and digalactosyl diglyceride. In all the species pancreas showed higher activity than intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The mechanism of absorption of phosphatidylcholine was studied in rats by injecting into the intestine phosphatidylcholine specifically labelled either in the fatty acid or in the glycerol moiety or with 32P, when considerable amounts of 1-acyl-lysophosphatidylcholine were found in the intestinal lumen. 2-([14C]Acyl)phosphatidylcholine gave markedly more radioactive unesterified fatty acids in the lumen, compared with the 1-([14C]acyl) derivative. Some of the radioactivity from either the fatty acid or the glycerol moiety of the injected phosphatidylcholine appeared in the mucosal triacylglycerols. 2. Injection of 32P-labelled phosphatidylcholine or 32P-labelled lysophosphatidylcholine led to the appearance of radioactive glycerylphosphorylcholine, glycerophosphate and Pi in the mucosa. 3. Rat mucosa was found to contain a highly active glycerylphosphorylcholine diesterase. 4. It was concluded that the dietary phosphatidylcholine is hydrolysed in the intestinal lumen by the pancreatic phospholipase A to 1-acylglycerylphosphorylcholine, which on entering the mucosal cell is partly reacylated to phosphatidylcholine, and the rest is further hydrolysed to glycerylphosphorylcholine, glycerophosphate, glycerol and Pi. The fatty acids and glycerophosphate are then reassembled to give triacylglycerols via the Kennedy (1961) pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total lipid content in the thermophilic fungi—Thermoascus aurantiacus, Humicola lanuginosa, Malbranchea pulchella var.sulfurea, andAbsidia ramosa—varied from 5.3 to 19.1% of mycelial dry weight. The neutral and polar lipid fractions accounted for 56.4 to 80.2% and 19.8 to 43.6%, respectively. All the fungi contained monoglycerides, diglycerides, triglycerides, free fatty acids, and sterols in variable amounts. Sterol ester was detected only inA. ramosa. Phosphatide composition was: phosphatidyl choline (15.9–47%), phosphatidyl ethanolamine (23.4–67%), phosphatidyl serine (9.3–17.6%), and phosphatidyl inositol (1.9–11.9%). Diphosphatidyl glycerol occurred in considerable quantity only inH. lanuginosa andM. pulchella var.sulfurea. Phosphatidic acid, detected as a minor component only inM. pulchella var.sulfurea andA. ramosa, does not appear to be a characteristic phosphatide of thermophilic fungi as suggested earlier. The 16∶0, 16∶1, 18∶0, 18∶1, and 18∶2 acids were the main fatty acid components. In addition,A. ramosa contained 18∶3 acid. Total lipids contained an average of 0.93 double bonds per mole of fatty acids, and neutral lipids tend to be more unsaturated than phospholipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (C=C), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15 wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5 wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28 wt%) and decreased swelling coefficient (35 vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23 °C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15 wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new biobased composite was developed by adding soy flour (SF) to polypropylene (PP). This composite shows an enhanced tensile strength and modulus but decrease in elongation at break. The compatibilizer (coupling agent) appears to have a synergistic effect on tensile strength. The presence of the compatibilizer improves the dispersion of SF in the PP matrix. The addition of glycerol plasticizer to the composite improves the processability resulting in improved performance, as compared to composites without glycerol plasticizer. The optimal compatibilizer content appears to be 6%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe’i group Musa cultivar, “Asupina”, has been examined and compared to that of a low-carotenoid-accumulating cultivar, “Cavendish”, to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in “Cavendish” and the conversion of amyloplasts to chromoplasts during fruit ripening in “Asupina”. Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in “Cavendish” fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays.