816 resultados para 1535
Resumo:
BACKGROUND: The effect of alcohol on liver disease in HIV infection has not been well characterized. METHODS: We performed a cross-sectional multivariable analysis of the association between lifetime alcohol use and liver fibrosis in a longitudinal cohort of HIV-infected patients with alcohol problems. Liver fibrosis was estimated with 2 noninvasive indices, "FIB-4," which includes platelets, liver enzymes, and age; and aspartate aminotransferase/platelet ratio index ("APRI"), which includes platelets and liver enzymes. FIB-4 <1.45 and APRI <0.5 defined the absence of liver fibrosis. FIB-4 >3.25 and APRI >1.5 defined advanced liver fibrosis. The main independent variable was lifetime alcohol consumption (<150 kg, 150 to 600 kg, >600 kg). RESULTS: Subjects (n = 308) were 73% men, mean age 43 years, 49% with hepatitis C virus (HCV) infection, 60% on antiretroviral therapy, 49% with an HIV RNA load <1,000 copies/ml, and 18.7% with a CD4 count <200 cells/mm(3) . Forty-five percent had lifetime alcohol consumption >600 kg, 32.7% 150 to 600 kg, and 22.3% <150 kg; 33% had current heavy alcohol use, and 69% had >9 years of heavy episodic drinking. Sixty-one percent had absence of liver fibrosis and 10% had advanced liver fibrosis based on FIB-4. In logistic regression analyses, controlling for age, gender, HCV infection, and CD4 count, no association was detected between lifetime alcohol consumption and the absence of liver fibrosis (FIB-4 <1.45) (adjusted odds ratio [AOR] = 1.12 [95% CI: 0.25 to 2.52] for 150 to 600 kg vs. <150 kg; AOR = 1.11 [95% CI: 0.52 to 2.36] for >600 kg vs. <150 kg; global p = 0.95). Additionally, no association was detected between lifetime alcohol use and advanced liver fibrosis (FIB-4 >3.25). Results were similar using APRI, and among those with and without HCV infection. CONCLUSIONS: In this cohort of HIV-infected patients with alcohol problems, we found no significant association between lifetime alcohol consumption and the absence of liver fibrosis or the presence of advanced liver fibrosis, suggesting that alcohol may be less important than other known factors that promote liver fibrosis in this population.
Resumo:
Altered activity of retinal endothelin-1 (ET-1) and nitric oxide may play a causal role in the hemodynamic and histopathological changes of diabetic retinopathy. This study evaluated the therapeutic potential of long-term selective blockade of the ET-1(A) receptor (ETRA) to prevent the development of retinopathy in a genetic mouse model of nonobese type 1 diabetes (NOD). Mice with NOD that received subcutaneous implantation of insulin pellets and wild-type control mice were treated for 4 months with the selective ETRA antagonist LU208075 (30 mg/kg/day) via drinking water. At the end of the study, blood glucose levels were evaluated, and animals were anesthetized and perfused intracardially with FITC-labeled dextran. Retinas were removed and either fixed in formalin for confocal microscope evaluation of retinal vascular filling or transferred to RNALater for quantitative reverse transcriptase-polymerase chain reaction to evaluate expression of NOS-3, NOS-1, ET-1, ETRA, ETRB, and the angiogenic factor adrenomedullin. Compared with wild-type controls, expression of ET-1, ETRA, ETRB, and adrenomedullin in mice with NOD were markedly upregulated in the retinas of nontreated mice (cycle time values relative to GAPDH [deltaCt], 14.8 vs. 13.7, 18.57 vs. 17.5, 10.76 vs. 9.9, and 11.7 vs. 9.1, respectively). Mean integral fluorescence intensity (MIFI) of retinal vascular filling was reduced from normal values of 24 to 12.5 in nontreated animals. LU208075 treatment normalized the upregulated expression of ET-1 and adrenomedullin, as well as the deficit in MIFI, but did not affect the increased ETRA and ETRB expression or the elevated plasma glucose levels found in nontreated animals. NOS isoform expression was essentially unchanged. ETRA antagonists may provide a novel therapeutic strategy to slow or prevent progression of retinal microvascular damage and proliferation in patients for whom there is clear evidence of activation of the ET-1 system.
Resumo:
Myocardial depression after cardiac surgery is modulated by cardiopulmonary bypass (CPB) and the underlying heart disease. The sodium pump is a key component for myocardial function. We hypothesized that the change in sodium pump expression during CPB correlates with intraoperative and postoperative laboratory and clinical parameters in neonates and children with various congenital heart defects. Sodium pump isoforms alpha1 (ATP1A1) and alpha3 (ATP1A3) mRNA expression in right atrial myocardium, excised before and after CPB, was quantified. Groups were assigned according to presence (VO group, n = 8) or absence (NO group, n = 8) of right atrial volume overload. CPB and aortic clamp time correlated with postoperative troponin-I values and ICU stay. ATP1A1 (P = 0.008) and ATP1A3 (P = 0.038) mRNA expression were significantly reduced during CPB. Longer aortic clamp times were associated with lower postoperative ATP1A1 (P = 0.045) and ATP1A3 (P = 0.002) mRNA expression. Low postoperative ATP1A1 (P = 0.043) and ATP1A3 (P = 0.002) expressions were associated with high troponin-I values. These results were restricted to the VO group. No correlation of sodium pump mRNA expression was found with the duration of ICU stay or ventilation. The postoperative troponin-I and clinical parameters correlated with the length of CPB, regardless of volume overload. In contrast, only dilated right atrium seemed to be susceptible to CPB in terms of sodium pump expression, showing a reduction during the operation and a correlation of sodium pump with postoperative troponin-I values.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
African trypanosomes undergo differentiation in order to adapt to the mammalian host and the tsetse fly vector. To characterize the role of a mitogen-activated protein (MAP) kinase homologue, TbMAPK5, in the differentiation of Trypanosoma brucei, we constructed a knockout in procyclic (insect) forms from a differentiation-competent (pleomorphic) stock. Two independent knockout clones proliferated normally in culture and were not essential for other life cycle stages in the fly. They were also able to infect immunosuppressed mice, but the peak parasitemia was 16-fold lower than that of the wild type. Differentiation of the proliferating long slender to the nonproliferating short stumpy bloodstream form is triggered by an autocrine factor, stumpy induction factor (SIF). The knockout differentiated prematurely in mice and in culture, suggestive of increased sensitivity to SIF. In contrast, a null mutant of a cell line refractory to SIF was able to proliferate normally. The differentiation phenotype was partially rescued by complementation with wild-type TbMAPK5 but exacerbated by introduction of a nonactivatable mutant form. Our results indicate a regulatory function for TbMAPK5 in the differentiation of bloodstream forms of T. brucei that might be exploitable as a target for chemotherapy against human sleeping sickness.
Resumo:
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.
Resumo:
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.
Resumo:
The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.
Resumo:
Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.
Resumo:
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.
Resumo:
Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.