927 resultados para 1084
Resumo:
The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.
Resumo:
Colon cancer patients are at risk for recurrence. Recurrent disease might be curable if detected early by surveillance. However, data on the quality of surveillance are scarce. The objective of this study is to analyze the quality of surveillance after curative surgery for colon cancer among a cohort of Swiss patients.
Resumo:
Patients with nodal positive prostate cancers are an important cohort with poorly defined risk factors. CD10 is a cell surface metallopeptidase that has been suggested to play a role in prostate cancer progression. CD10 expression was evaluated in 119 nodal positive prostate cancer patients using tissue microarrays constructed from primary tumors and lymph node metastases. All patients underwent radical prostatectomy and standardized extended lymphadenectomy. They had no neoadjuvant therapy and received deferred androgen deprivation. In the primary tumor, high CD10 expression was significantly associated with earlier death from disease when compared with low CD10 expression (5-year survival 73.7% vs. 91.8%; p = 0.043). In the metastases, a high CD10 expression was significantly associated with larger total size of metastases (median 11.4 vs. 6.5 mm; p = 0.015), earlier death of disease (5-year survival 71.5% vs. 87.3%; p = 0.017), and death of any cause (5-year survival 70.0% vs. 87.2%; p = 0.001) when compared with low CD10 expression. CD10 expression in the metastases added independent prognostic information for overall survival (p = 0.029) after adjustment for Gleason score of the primary tumor, nodal tumor burden, and resection margins. In conclusion, a high CD10 expression in prostate cancer predicts early death. This information is inherent in the primary tumors and in the lymph node metastases and might help to personalize patient management.
Resumo:
Protein is an essential component for life, and its synthesis is mediated by codons in any organisms on earth. While some codons encode the same amino acid, their usage is often highly biased. There are many factors that can cause the bias, but a potential effect of mononucleotide repeats, which are known to be highly mutable, on codon usage and codon pair preference is largely unknown. In this study we performed a genomic survey on the relationship between mononucleotide repeats and codon pair bias in 53 bacteria, 68 archaea, and 13 eukaryotes. By distinguishing the codon pair bias from the codon usage bias, four general patterns were revealed: strong avoidance of five or six mononucleotide repeats in codon pairs; lower observed/expected (o/e) ratio for codon pairs with C or G repeats (C/G pairs) than that with A or T repeats (A/T pairs); a negative correlation between genomic GC contents and the o/e ratios, particularly for C/G pairs; and avoidance of C/G pairs in highly conserved genes. These results support natural selection against long mononucleotide repeats, which could induce frameshift mutations in coding sequences. The fact that these patterns are found in all kingdoms of life suggests that this is a general phenomenon in living organisms. Thus, long mononucleotide repeats may play an important role in base composition and genetic stability of a gene and gene functions.
Resumo:
This study examined how ingroup status affects the tendency for people to internalize ingroup stereotypes (i.e. self-stereotype) when expecting to interact with another individual who holds stereotypic views of them. Past research has demonstrated that people self-stereotype when they want to affiliate with another individual who holds stereotypic views of them. By self-stereotyping, individuals create a common bond or shared set of beliefs with the other individual. This line of research has not yet examinedif there are any moderators in the relationship between affiliation motivation and self-stereotyping. However, there is reason to believe that members of lower-status groups are more likely to feel the need to create this common bond through self-stereotyping because 1) they identify more closely with their social group, 2) their group identity is more salient 3) they are more aware of the expectations of others, 4) and they care more about the quality of an interaction with a member from a higher-status group. For this experiment, I recruited twenty-seven members of Alpha Chi Omega andtwenty-eight members of Delta Gamma, two sororities that are perceived to be middle-ranked (as determined by a pre-test survey). Upon arriving to the study, half the participants were informed that they would be interacting with a member of Kappa Kappa Gamma, a higher-ranked sorority (as determined by a pre-test survey) and half the participants were informed that they would be interacting with a member of a Chi Omega, a lower-ranked sorority (as determined by a pre-test survey). Participants were also informed that this partner held stereotypic views of their (i.e. the participant’s)sorority. After, participants were given the Self-Stereotyping Measure in which they rated how well sixteen characteristics described themselves. The results of the series of analyses performed on participants’ ratings on the Self-Stereotyping Measure indicated that when expecting to interact with another individual, members of low-status groups self-stereotype more than members of high-statusgroups and those who do not expect to interact. Furthermore, unexpectedly, among members of high-status groups, those who expected to interact with a member of a low-status group self-stereotyped less than those who did not expect to interact. Thus, this research provides support for the hypothesis that group status is a moderator in the relationship between self-stereotyping and affiliation motivation.
Resumo:
Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
Resumo:
Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Resumo:
While rifaximin was able to improve symptoms in patients with irritable bowel syndrome (IBS) in phase III trials, these results are yet to be repeated in phase IV studies.
Resumo:
Intestinal immunoglobulin A (IgA) ensures host defense and symbiosis with our commensal microbiota. Yet previous studies hint at a surprisingly low diversity of intestinal IgA, and it is unknown to what extent the diverse Ig arsenal generated by somatic recombination and diversification is actually used. In this study, we analyze more than one million mouse IgA sequences to describe the shaping of the intestinal IgA repertoire, its determinants, and stability over time. We show that expanded and infrequent clones combine to form highly diverse polyclonal IgA repertoires with very little overlap between individual mice. Selective homing allows expanded clones to evenly seed the small but not large intestine. Repertoire diversity increases during aging in a dual process. On the one hand, microbiota-, T cell-, and transcription factor RORγt-dependent but Peyer's patch-independent somatic mutations drive the diversification of expanded clones, and on the other hand, new clones are introduced into the repertoire of aged mice. An individual's IgA repertoire is stable and recalled after plasma cell depletion, which is indicative of functional memory. These data provide a conceptual framework to understand the dynamic changes in the IgA repertoires to match environmental and intrinsic stimuli.
Resumo:
Neutralizing antibody (nAb) responses to lymphocytic choriomeningitis virus (LCMV) in mice and immunodeficiency virus and hepatitis C virus in humans are usually weak and slow to develop. This may be the result of structural properties of the surface glycoprotein, a low frequency of B cells with neutralizing specificity, and the necessity of prolonged affinity maturation of specific nAbs. In this study, we show that during LCMV infection, CD27 signaling on CD4+ T cells enhances the secretion of interferon-gamma and tumor necrosis factor-alpha. These inflammatory cytokines lead to the destruction of splenic architecture and immunodeficiency with reduced and delayed virus-specific nAb responses. Consequently, infection with the otherwise persistent LCMV strain Docile was eliminated after CD27 signaling was blocked. Our data provide a novel mechanism by which LCMV avoids nAb responses and suggest that blocking the CD27-CD70 interaction may be an attractive strategy to prevent chronic viral infection.
Resumo:
Invariant human TCR Valpha24-Jalpha18+/Vbeta11+ NKT cells (iNKT) are restricted by CD1d-alpha-glycosylceramides. We analyzed crystal structures and binding characteristics for an iNKT TCR plus two CD1d-alpha-GalCer-specific Vbeta11+ TCRs that use different TCR Valpha chains. The results were similar to those previously reported for MHC-peptide-specific TCRs, illustrating the versatility of the TCR platform. Docking TCR and CD1d-alpha-GalCer structures provided plausible insights into their interaction. The model supports a diagonal orientation of TCR on CD1d and suggests that complementarity determining region (CDR)3alpha, CDR3beta, and CDR1beta interact with ligands presented by CD1d, whereas CDR2beta binds to the CD1d alpha1 helix. This docking provides an explanation for the dominant usage of Vbeta11 and Vbeta8.2 chains by human and mouse iNKT cells, respectively, for recognition of CD1d-alpha-GalCer.
Resumo:
The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis.