919 resultados para 090904 Navigation and Position Fixing
Resumo:
Two species of Clinostomum previously described from Australia, C. hornum from Botaurus poiciloptilus (Australian bittern) and Nycticorax caledonicus (Nankeen night heros) and C. australiense from Pelecanus conspicillatus (Australian pelican), which have previously been synonymised with C. complanatum, are redescribed and recognised as valid species. In addition, C. complanatum is recorded from Egretta alba (large egret), E. garzetta (little egret), E. intermedia (plumed egret), N. caledonicus and Ardea novaehollandiae (white-faced heron). C. wilsoni n. sp. is described from E. intermedia from Queensland. C. wilsoni differs from the other three species in size and shape of the body and in the oral collar, oral sucker, intestinal caeca, caecal diverticula and position of testes. Taxonomic problems within the genus Clinostomum are discussed.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
Introduction: Number 3 cleft or oral-nasal-ocular cleft is a well-known entity that was described by Morian over a century ago. This malformation is a paranasal-medial orbitomaxillary cleft running across the lacrimal segment of the lower eyelid and over the lacrimal groove. The Tessier number 3 naso-ocular cleft represents one of the most difficult and challenging malformations to correct for the reconstructive surgeon. We have conducted a retrospective analysis of our series consisting of 21 cases. Objective: The objective was to review the functional outcome and aesthetic results of the different techniques applied for each case. Materials and Methods: From 1997 to 2007, 21 patients with a Tessier number 3 cleft were treated in our craniofacial units. The clinical findings, tomographic studies, and surgical procedures were reviewed and analyzed. We have discussed our protocol of the treatment. Results: We have treated facial malformation in 2 craniofacial centers. Fourteen patients were evaluated in the first year of their life, with an average age at presentation of 3 years. Twelve patients were female, and 9 were male; 6 patients had amniotic bands in limbs, 5 patients had an association with Tessier number 11 cleft, 3 patients with number 9 cleft, and 1 with number 7 cleft. Related to cleft lip, 10 patients had bilateral cleft lip, and 8 patients had unilateral cleft lip. Three patients did not have any involvement of the upper lip. The alar base was deviated upward in 19 patients, 11 cases had severe anatomic alteration with the lateral border of the ala above the medial canthus, and 8 cases had a mild dislocation. Nine cases of lacrimal duct obstruction and 8 cases of lacrimal duct extrophy were identified. Twelve patients had a lower eyelid coloboma of varying grades, and there were 2 cases of microblepharia. Aiming the soft tissue reconstruction, eyelid, nose, and upper lip were evaluated regarding their position, absence of tissue, and position of medial canthus and ala. Twelve of our patients underwent correction in the same moment, their medial canthus rotated upward and the ala downward, using the contralateral side as the reference. The lip was treated using a Millard-like technique. Neo-conjunctivorhinostomy was performed in the same moment in 2 patients or later in 1 case. Four patients had plagiocephaly due to the cranial involvement, and they were submitted to cranioplasty. Three had neurosurgical approach and advancement of the frontal bandeau. One adult patient received an acrylic plate to reshape the frontal area. Conclusions: Tessier number 3 cleft is one of the most difficult and challenging malformations to correct for the reconstructive surgeon. Besides the difficulties of its treatment, patients with Tessier number 3 cleft may achieve good results when the team has good skills.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.
Resumo:
P>The aim of this study was to validate an original portable device to measure attachment retention of implant overdentures both in the lab and in clinical settings. The device was built with a digital force measurement gauge (Imada) secured to a vertical wheel stand associated with a customized support to hold and position the denture in adjustable angulations. Sixteen matrix and patrix cylindrical stud attachments (Locator (R)) were randomly assigned as in vitro test specimens. Attachment abutments were secured in an implant analogue hung to the digital force gauge or to the load cell of a traction machine used as the gold standard (Instron Universal Testing Machine). Matrices were secured in a denture duplicate attached to the customized support, permitting reproducibility of their position on both pulling devices. Attachment retention in the axial direction was evaluated by measuring maximum dislodging force or peak load during five consecutive linear dislodgments of each attachment on both devices. After a wear simulation, retention was measured again at several time periods. The peak load measurements with the customized Imada device were similar to those obtained with the gold standard Instron machine. These findings suggest that the proposed portable device can provide accurate information on the retentive properties of attachment systems for removable dental prostheses.
Resumo:
The step size determines the accuracy of a discrete element simulation. The position and velocity updating calculation uses a pre-calculated table and hence the control of step size can not use the integration formulas for step size control. A step size control scheme for use with the table driven velocity and position calculation uses the difference between the calculation result from one big step and that from two small steps. This variable time step size method chooses the suitable time step size for each particle at each step automatically according to the conditions. Simulation using fixed time step method is compared with that of using variable time step method. The difference in computation time for the same accuracy using a variable step size (compared to the fixed step) depends on the particular problem. For a simple test case the times are roughly similar. However, the variable step size gives the required accuracy on the first run. A fixed step size may require several runs to check the simulation accuracy or a conservative step size that results in longer run times. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Discharge grates play an important role in determining the performance of autogenous, semi-autogenous and grate discharge ball mills. The flow capacity (grinding capacity) of these mills is strongly influenced by the discharge grate design-open area and position of apertures, as well as the performance of the pulp lifters. As mill sizes have progressively increased and closed-circuiting has become more popular the importance of grate and pulp lifter design has grown. Unfortunately very few studies have concentrated on this aspect of mill performance. To remedy this a series of laboratory and pilot-scale tests were undertaken to study both the performance of grates on their own and in conjunction with pulp lifters. In this first paper of a two-part series the results from the grate-only experiments are presented and discussed, whilst the performance of the grate-pulp-lifter system is covered in the second paper. The results from the grate-only experiments have shown that the build-up of slurry (hold-up) inside the mill starts from the shoulder of the charge, while the toe position of the slurry progressively moves towards the toe of the charge with increasing flowrate. Besides grate design (open area and position of apertures), charge volume and mill speed were also found to have a strong influence on mill hold-up and interact with grate design variables. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Solution enthalpies of adamantan-1-ol, 2-methyl- butan-2-ol, and 3-methylbutan-1-ol have been measured at 298.15 K, in a set of 16 protogenic and non-protogenic solvents. The identification and quantification of solvent effects on the solution processes under study were performed using quantitative-structure property relationships. The results are discussed in terms of solute-solvent-solvent interactions and also in terms of the influence of compound's size and position of its hydroxyl group.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Tese de Doutoramento, Geologia (Hidrogeologia), 17 de Dezembro de 2013, Universidade dos Açores.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores – Ramo Automação e Sistemas.
Resumo:
Trabalho de Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
No trabalho é desenvolvido um sistema de treino para ciclistas. O sistema de treino é constituído por uma bicicleta de ―Spinning‖, um travão accionado electricamente, e por um sensor de velocidade, utilizado para medir a velocidade de rotação da roda de inércia. Nos primeiros capítulos encontra-se o estudo dos vários conceitos que envolvem o sistema de treino. É realizado um estudo sobre as principais forças que actuam numa bicicleta. Outro conceito estudado é o filtro Kalman (FK). Este será importante para o controlo do sistema de treino. O modelo do sistema de treino está dividido em duas partes. A primeira corresponde ao sistema mecânico, e a segunda o sistema de controlo e actuação. Este é constituído por um sensor de velocidade, uma unidade de estimação e o sistema de actuação do travão da bicicleta. A unidade de estimação é composta por conjunto de filtros de Kalman que estima a velocidade, a aceleração e a posição necessárias ao cálculo da força resistente ao movimento do conjunto ciclista bicicleta. Os resultados da simulação do sistema mostram que o sistema de treino modelado apresenta um desempenho bastante razoável. A estimação efectuada pelos filtros dos valores da velocidade, da aceleração e da posição do ciclista, permite a unidade de controlo do sistema calcular o valor da força resistente ao movimento.