972 resultados para β adrenergic agonist


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.Methods: The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.Results: All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. on the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phaseGnRH- a administration group. The majority of the results presented heterogeneity.Conclusions: These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Some studies have suggested that the suppression of endogenous LH secretion does not seem to affect the majority of patients who are undergoing assisted reproduction and stimulation with recombinant FSH (r-FSH). Other studies have indicated that a group of normogonadotrophic women down-regulated and stimulated with pure FSH preparations may experience low LH concentrations that compromise the IVF parameters. The present study aimed to compare the efficacy of recombinant LH (r-LH) supplementation for controlled ovarian stimulation in r-FSH and GnRH-agonist (GnRH-a) protocol in ICSI cycles.Methods: A total of 244 patients without ovulatory dysfunction, aged < 40 years and at the first ICSI cycle were divided into two groups matched by age according to an ovarian stimulation scheme: Group I (n = 122): Down-regulation with GnRH-a + r-FSH and Group II (n = 122): Downregulation with GnRH-a + r-FSH and r-LH (beginning simultaneously).Result(s): The number of oocytes collected, the number of oocytes in metaphase II and fertilization rate were significantly lower in the Group I than in Group II (P = 0.036, P = 0.0014 and P = 0.017, respectively). In addition, the mean number of embryos produced per cycle and the mean number of frozen embryos per cycle were statistically lower (P = 0.0092 and P = 0.0008, respectively) in Group I than in Group II. Finally the cumulative implantation rate (fresh+thaw ed embryos) was significantly lower (P = 0.04) in Group I than in Group II. The other clinical and laboratory results analyzed did not show difference between groups.Conclusion: These data support r-LH supplementation in ovarian stimulation protocols with r-FSH and GnRH-a for assisted reproduction treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The selection of developmentally competent human gametes may increase the efficiency of assisted reproduction. Spermatozoa and oocytes are usually assessed according to morphological criteria. Oocyte morphology can be affected by the age, genetic characteristics, and factors related to controlled ovarian stimulation. However, there is a lack of evidence in the literature concerning the effect of gonadotropin-releasing hormone (GnRH) analogues, either agonists or antagonists, on oocyte morphology. The aim of this randomized study was to investigate whether the prevalence of oocyte dysmorphism is influenced by the type of pituitary suppression used in ovarian stimulation.Methods: A total of 64 patients in the first intracytoplasmic sperm injection (ICSI) cycle were prospectively randomized to receive treatment with either a GnRH agonist with a long-term protocol (n: 32) or a GnRH antagonist with a multi-dose protocol (n: 32). Before being subjected to ICSI, the oocytes at metaphase II from both groups were morphologically analyzed under an inverted light microscope at 400x magnification. The oocytes were classified as follows: normal or with cytoplasmic dysmorphism, extracytoplasmic dysmorphism, or both. The number of dysmorphic oocytes per total number of oocytes was analyzed.Results: Out of a total of 681 oocytes, 189 (27.8 %) were morphologically normal, 220 (32.3 %) showed cytoplasmic dysmorphism, 124 (18.2%) showed extracytoplasmic alterations, and 148 (21.7%) exhibited both types of dysmorphism. No significant difference in oocyte dysmorphism was observed between the agonist- and antagonist- treated groups (P > 0.05). Analysis for each dysmorphism revealed that the most common conditions were alterations in polar body shape (31.3%) and the presence of diffuse cytoplasmic granulations (22.8%), refractile bodies (18.5%) and central cytoplasmic granulations (13.6%). There was no significant difference among individual oocyte dysmorphisms in the agonist- and antagonist-treated groups (P > 0.05).Conclusions: Our randomized data indicate that in terms of the quality of oocyte morphology, there is no difference between the antagonist multi-dose protocol and the long-term agonist protocol. If a GnRH analogue used for pituitary suppression in IVF cycles influences the prevalence of oocyte dysmorphisms, there does not appear to be a difference between the use of an agonist as opposed to an antagonist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN). Considering that alpha(2)-adrenergic receptors exist in the LPBN and the similar origin of serotonergic and adrenergic afferent pathways to the LPBN, in this study we investigated the effects of bilateral injections of moxonidine alone or combined with RX 821002 (alpha(2)- adrenergic antagonist) into the LPBN on 1.8% NaCl and water intake induced by the treatment with s.c. furosemide (10 mg/kg)+captopril (5 mg/kg). Additionally, we investigated if moxonidine into the LPBN would modify furosemide+captopril-induced c-fos expression in the forebrain. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were used. Contrary to forebrain injections, bilateral LPBN injections of moxonidine (0.1, 0.5 and 1 nmol/0.2 mul) strongly increased furosemide+captopril-induced 1.8% NaCl intake (16.6 +/- 2.7, 44.5 +/- 3.2 and 44.5 +/- 4.3 ml/2 h, respectively, vs. vehicle: 6.9 +/- 1.5 ml/2 h). Only the high dose of moxonidine increased water intake (23.3 +/- 3.8 ml/2 h, vs. vehicle: 12.1 +/- 2.6 ml/2 h). Prior injections of RX 821002 (10 and 20 nmol/0.2 mu1) abolished the effect of moxonidine (0.5 nmol) on 1.8% NaCl intake. Moxonidine into the LPBN did not modify furosemide+captopril-induced c-fos expression in forebrain areas related to the control of fluid-electrolyte balance. The results show that the activation of LPBN a2-adrenergic receptors enhances furosemide+captopril-induced 1.8% NaCl and water intake. This enhancement was not related to prior alteration in the activity of forebrain areas as suggested by c-fos expression. Previous and present results indicate opposite roles for alpha(2-)adrenergic receptors in the control of sodium and water intake according to their distribution in the rat brain. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we investigated the effects of pretreatment with N-G-nitro-L-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) injected intravenously (IV) on the hypotension, bradycardia, and vasodilation produced by moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist) injected into the fourth brain ventricle (4th V) in rats submitted to acute hypertension that results from baroreflex blockade by bilateral injections of kynurenic acid (kyn, glutamatergic receptor antagonist) into the nucleus of the solitary tract (NTS) or in normotensive rats. Male Wistar rats (n = 5 to 7/group) anesthetized with IV urethane (1.0 g kg(-1) of body weight) and a-chloralose (60mg kg(-1) of body weight) were used. Bilateral injections of kyn (2.7 nmol 100 nL(-1)) into the NTS increased baseline mean arterial pressure (148 +/- 11 mm Hg, vs. control: 102 +/- 4mm Hg) and baseline heart rate (417 +/- 11 bpm, vs. control: 379 +/- 6 bpm). Moxonidine (20 nmol mu L-1) into the 4th V reduced mean arterial pressure and heart rate to similar levels in rats treated with kyn into the NTS (68 +/- 9 mm Hg and 359 +/- 7 bpm) or in control normotensive rats (66 +/- 7 mm Hg and 362 +/- 8 bpm, respectively). The pretreatment with L-NAME (2 5 mu mol kg-1, IV) attenuated the hypotension produced by moxonidine into the 4th V in rats treated with kyn (104 +/- 6 mm Hg) or in normotensive rats (95 +/- 8 mm Hg), without changing bradycardia. Moxonidine into the 4th V also reduced renal, mesenteric, and hindquarter vascular resistances in rats treated or not with kyn into the NTS and the pretreatment with L-NAME IV reduced these effects of moxonidine. Therefore, these data indicate that nitric oxide mechanisms are involved in hypotension and mesenteric, renal, and hindquarter vasodilation induced by central moxonidine in normotensive and in acute hypertensive rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholinergic, agonists activate salivation and the alpha (2)-adrenergic and imidazoline receptor agonists induce opposite effects. In the present study, we investigated the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of moxonidine (an a-adrenergic and imidazoline receptor agonist) on the salivation induced by the cholinergic agonist pilocarpine. Male Holtzman rats wish stainless steel cannula implanted into the lateral ventricle (LV) were used. In rats anesthetized with tribromoethanol (200 mg kg(-1)), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The treatment with moxonidine (5, 10 and 20 nmol in 1 mul) injected,i.c.v. reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (48 +/- 5, 17 +/- 2 and 15 +/- 2 mg min(-1) vs. control, 73 +/- 7 mg min(-1)). The same doses of moxonidine injected i.c.v. also reduced the salivary secretion induced by pilocarpine (500 nmol in 1 mul). injected i.c.v. (44 +/- 1, 14 +/- 2 and 20 +/- 3 mg min(-1) vs. control, 51 +/- 2 mg min(-1)). Injection of moxonidine (20 nmol in 0.1 ml) i.p. produced no chance on i.p. pilocarpine-induced salivation (58 +/- 4 mg min(-1) vs. control, 50 +/- 4 mg min(-1)). The results show that central, but not peripheral, injection of moxonidine inhibit,. pilocarpine-induced salivation, suggesting that central mechanisms activated by alpha (2)-adrenergic/imidazoline agonists inhibit cholinergic-induced salivation in rats. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)