991 resultados para <250 µm
Resumo:
By conducting point-by-point inscription in a continuously moving slab of pure fused silica at the optimal depth (170νm depth below the surface), we have fabricated a 250nm period nanostructure with 30nJ, 300fs, 1kHz pulses from a frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of a pure fused silica at the optimal depth (170 μm depth below the surface), we have fabricated a 250-nm-period nanostructure with 30 nJ, 300 fs, 1 kHz pulses from frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports. The performed numerical modeling confirms the obtained experimental results.
Resumo:
We demonstrated a high fundamental repetition-rate pulsed erbium-doped fiber laser with all-fiber-integrated configuration. A novel scheme using a 45°-tilted fiber grating as the in-fiber polarizing element was employed to shorten the total cavity length and, thus, increase the fundamental repetition rate of the laser. Dissipative soliton pulses mode-locked with a fundamental repetition rate of 251.3 MHz and pulse duration of 96.7 fs have been achieved from the compact and all-fiber ring cavity laser. Additionally, passively Q-switched pulses were observed from this high fundamental repetition-rate fiber laser, which is the first report on Q-switched fiber laser using a tilted fiber grating.
Resumo:
(M. Historic Preservation) -- University of Maryland-College Park, 2015 Faculty Advisor: Dr. Constance Werner Ramirez. Program Director: Dr. Donald W. Linebaugh
Resumo:
(Artículos periodísticos)
Resumo:
Covers part of Harrison County (W.Va.)
Resumo:
Doctrina
Resumo:
Esta investigación se desarrolló en la zona costera del estado de Michoacán, el objetivo fundamental es obtener la zonificación funcional ecoturística de la zona costera de Michoacán, México a partir de la clasificación tipológica de los paisajes costeros. Sobre la base del mapa de paisajes físico-geográficos a escala 1:250 000, se calcularon indicadores de heterogeneidad geoecológica y se realizó una recopilación biblio-cartográfica sobre la biodiversidad del territorio. Se diseñaron modelos teóricos de máximo potencial natural para la realización de actividades ecoturísticas y se calculó la similitud de cada geocomplejo con el modelo; mediante un análisis de conglomerados se obtuvo la zonificación funcional ecoturística; para su representación cartográfica se emplearon los métodos de fondo cualitativo, numéricos y símbolos pictóricos. La propuesta de zonificación funcional ecoturística para la costa de Michoacán, permite conocer la distribución del potencial natural del territorio para el ecoturismo, destacando la observación de aves, contemplación de paisajes y senderismo; además, existen potencialidades para algunas actividades de turismo de aventura como el espeleoturismo y la escalada en roca. No obstante la escala regional 1:250 000 de la investigación; esta ofrece una base sustentable para la planificación territorial del ecoturismo de una región con alta diversidad biológica y cultural como la costa de Michoacán.
Resumo:
Titanium dioxide nanocrystals are an important commercial product used primarily in white pigments and abrasives, however, more recently the anatase form of TiO2 has become a major component in electrochemical and photoelectrochemical devices. An important property of titanium dioxide nanocrystals for electrical applications is the degree of crystallinity. Numerous preparation methods exist for the production of highly crystalline TiO2 particles. The majority of these processes require long reaction times, high pressures and temperatures (450–1400 °C). Recently, hydrothermal treatment of colloidal TiO2 suspensions has been shown to produce quality crystalline products at low temperatures (<250 °C). In this paper we extend this idea utilising a direct microwave heating source. A comparison between convection and microwave hydrothermal treatment of colloidal TiO2 is presented. The resulting highly crystalline TiO2 colloids were characterised using Raman spectroscopy, XRD, TEM, and electron diffraction. The results show that the microwave treatment of colloidal TiO2 gives comparable increases in crystallinity with respect to normal hydrothermal treatments while requiring significantly less time and energy than the hydrothermal convection treatment.
Resumo:
Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.
Resumo:
The basis of treatment for amblyopia (poor vision due to abnormal visual experience early in life) for 250 years has been patching of the unaffected eye for extended times to ensure a period of use of the affected eye. Over the last decade randomised controlled treatment trials have provided some evidence on how to tailor amblyopia therapy more precisely to achieve the best visual outcome with the least negative impact on the patient and the family. This review highlights the expansion of knowledge regarding treatment for amblyopia and aims to provide optometrists with a summary of research evidence to enable them to better treat amblyopia. Treatment for amblyopia is effective, as it reduces overall prevalence and severity of visual loss in this population. Correction of refractive error alone significantly improves visual acuity, sometimes to the point where further amblyopia treatment is not required. Atropine penalisation and patch occlusion are effective in treating amblyopia. Lesser amounts of occlusion or penalisation have been found to be just as effective as greater amounts. Recent evidence has highlighted that occlusion or penalisation in amblyopia treatment can create negative changes in behaviour in children and impact on family life. These complications should be considere when prescribing treatment because they can negatively affect compliance. Studies investigating the maximum age at which treatment of amblyopia can still be effective and the importance of near activities during occlusion are ongoing.
Resumo:
This paper assesses and compares the performances of two daylight collection strategies, one passive and one active, for large-scale mirrored light pipes (MLP) illuminating deep plan buildings. Both strategies use laser cut panels (LCP) as the main component of the collection system. The passive system comprises LCPs in pyramid form, whereas the active system uses a tiled LCP on a simple rotation mechanism that rotates 360° in 24 hours. Performance is assessed using scale model testing under sunny sky conditions and mathematical modelling. Results show average illuminance levels for the pyramid LCP ranging from 50 to 250 lux and 150 to 200 lux for the rotating LCPs. Both systems improve the performance of a MLP. The pyramid LCP increases the performance of a MLP by 2.5 times and the rotating LCP by 5 times, when compared to an open pipe particularly for low sun elevation angles.