996 resultados para yielding components, yield
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.
Resumo:
Tese de Mestrado em Engenharia Informática
Resumo:
Scope: Everybody lies. Plagiarism is pervasive because people are used to lying to succeed. While bringing up someone else’s ideas may be an inadvertent case of cryptomnesia, or unintentional plagiarism, academic plagiarism is hardly ever that case. Building on the existing literature, the aim of this paper is twofold. On the one hand, it contributes to the creation of a new framework for the definition of academic plagiarism within the larger scope of academic dishonesty, or academic misconduct; on the other hand, it identifies forms to recognize and discourage it. Aim: Our aim is to provide the basis for a subsequent empirical study on the phenomenon of plagiarism at LABS-ISCAL hoping to help diminish this practice that is deeply rooted in students in general.
Resumo:
In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química Pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecn
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
The members of the subfamily Triatominae (Hemiptera : Reduviidae) comprise a great number of species of medical importance in the transmission of the T. cruzi (American trypanosomiasis). The aim of this study was to contribute to the knowledge about the chemical composition in proteins, lipids, lipoproteins, and carbohydrates of vectors of Chagas' disease corresponding to twelve members of the subfamily Triatominae. This study was carried out in ninphs of the fifth instar and adult males of the species: T. delpontei, T. dimidiata, T. guasayana, T. infestans, T. mazzotti, T. pallidipennis, T. patagonica, T. platensis, T. rubrovaria, T. sordida of the Triatoma genus, and D. maximus and P. megistus of the Dipatalogaster and Panstrongylus genera respectively. The results show on one hand, qualitative differences in the protein composition, and on the other hand, similarity in the lipoprotein profiles. Lipids, proteins, and carbohydrates did not show significant differences between species or/and stages.
Resumo:
Auditory event-related potentials (AERPs) are widely used in diverse fields of today’s neuroscience, concerning auditory processing, speech perception, language acquisition, neurodevelopment, attention and cognition in normal aging, gender, developmental, neurologic and psychiatric disorders. However, its transposition to clinical practice has remained minimal. Mainly due to scarce literature on normative data across age, wide spectrumof results, variety of auditory stimuli used and to different neuropsychological meanings of AERPs components between authors. One of the most prominent AERP components studied in last decades was N1, which reflects auditory detection and discrimination. Subsequently, N2 indicates attention allocation and phonological analysis. The simultaneous analysis of N1 and N2 elicited by feasible novelty experimental paradigms, such as auditory oddball, seems an objective method to assess central auditory processing. The aim of this systematic review was to bring forward normative values for auditory oddball N1 and N2 components across age. EBSCO, PubMed, Web of Knowledge and Google Scholarwere systematically searched for studies that elicited N1 and/or N2 by auditory oddball paradigm. A total of 2,764 papers were initially identified in the database, of which 19 resulted from hand search and additional references, between 1988 and 2013, last 25 years. A final total of 68 studiesmet the eligibility criteria with a total of 2,406 participants from control groups for N1 (age range 6.6–85 years; mean 34.42) and 1,507 for N2 (age range 9–85 years; mean 36.13). Polynomial regression analysis revealed thatN1latency decreases with aging at Fz and Cz,N1 amplitude at Cz decreases from childhood to adolescence and stabilizes after 30–40 years and at Fz the decrement finishes by 60 years and highly increases after this age. Regarding N2, latency did not covary with age but amplitude showed a significant decrement for both Cz and Fz. Results suggested reliable normative values for Cz and Fz electrode locations; however, changes in brain development and components topography over age should be considered in clinical practice.
Resumo:
Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.
Resumo:
Sera from patients infected with Taenia solium, Hymenolepis nana and Echinococcus granulosus were tested against homologous and heterologous parasite antigens using an ELISA assay, and a high degree of cross-reactivity was verified. To identify polypeptides responsible for this cross reactivity, the Enzyme Linked Immunoelectro Transfer Blot (EITB) was used. Sera from infected patients with T.solium, H.nana, and E.granulosus were assessed against crude, ammonium sulphate precipitated (TSASP), and lentil-lectin purified antigens of T.solium and crude antigens of.H.nana and E.granulosus. Several bands, recognized by sera from patients with T.solium, H.nana, and E.granulosus infections, were common to either two or all three cestodes. Unique reactive bands in H.nana were noted at 49 and 66 K-Da and in E.granulosus at 17-21 K-Da and at 27-32 K-Da. In the crude cysticercosis extract, a specific non glycoprotein band was present at 61-67 K-Da in addiction to specific glycoprotein bands of 50, 42, 24, 21, 18, 14, and 13 K-Da. None of the sera from patients with H.nana or E.granulosus infection cross reacted with these seven glycoprotein bands considered specific for T.solium infection.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Dissertação apresentada no âmbito do Mestrado em Engenharia Informática para obtenção do grau de Mestre em Engenharia Informática