964 resultados para wall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design methodology is presented for turbines in an annulus with high end wall angles. Such stages occur where large radial offsets between the stage inlet and stage outlet are required, for example in the first stage of modern low pressure turbines, and are becoming more prevalent as bypass ratios increase. The turbine vanes operate within s-shaped ducts which result in meridional curvature being of a similar magnitude to the bladeto-blade curvature. Through a systematic series of idealized computational cases, the importance of two aspects of vane design are shown. First, the region of peak end wall meridional curvature is best located within the vane row. Second, the vane should be leant so as to minimize spanwise variations in surface pressure-this condition is termed "ideal lean." This design philosophy is applied to the first stage of a low pressure turbine with high end wall angles. © 2014 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of a turbine stage featuring very high end wall angles is presented. The initial turbine design did not achieve a satisfactory performance and the difference between the design predictions and the test results was traced to a large separated region on the rear suction-surface. To improve the agreement between computational fluid dynamics (CFD) and experiment, it was found necessary to modify the turbulence modeling employed. The modified CFD code was then used to redesign the vane, and the changes made are described. When tested, the performance of the redesigned vane was found to have much closer agreement with the predictions than the initial vane. Finally, the flowfield and performance of the redesigned stage are compared to a similar turbine, designed to perform the same duty, which lies in an annulus of moderate end wall angles. A reduction in stage efficiency of at least 2.4% was estimated for the very high end wall angle design. © 2014 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the relationship between the average wall number (N) and the diameter (d) for carbon nanotubes (CNTs) grown by chemical vapour deposition. It is found that N depends linearly on d for diameters in the range of 2.5-10 nm, while single wall nanotubes predominate for diameters under about 2.1 nm. The linear relationship is found to depend somewhat on the growth conditions. It is also verified that the mean diameter depends on the diameter of the originating catalyst nanoparticle, and thus on the initial catalyst thickness where a thin film catalyst is used. This simplifies the characterisation of CNTs by electron microscopy. We also find a linear relationship between nanotube diameter and initial catalyst film thickness. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present for the first time, a novel silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal wall shear stress sensor based on a tungsten hot-film and three thermopiles. These devices have been fabricated using a commercial 1 μm SOI-CMOS process followed by a deep reactive ion etch (DRIE) back-etch step to create silicon oxide membranes under the hot-film for effective thermal isolation. The sensors show an excellent repeatability of electro-thermal characteristics and can be used to measure wall shear stress in both constant current anemometric as well as calorimetric modes. The sensors have been calibrated for wall shear stress measurement of air in the range of 0-0.48 Pa using a suction type, 2-D flow wind tunnel. The calibration results show that the sensors have a higher sensitivity (up to four times) in calorimetric mode compared to anemometric mode for wall shear stress lower than 0.3 Pa. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Our aim was to determine whether alterations in biomechanical properties of human diseased compared to normal coronary artery contribute to changes in artery responsiveness to endothelin-1 in atherosclerosis. MAIN METHODS: Concentration-response curves were constructed to endothelin-1 in normal and diseased coronary artery. The passive mechanical properties of arteries were determined using tensile ring tests from which finite element models of passive mechanical properties of both groups were created. Finite element modelling of artery endothelin-1 responses was then performed. KEY FINDINGS: Maximum responses to endothelin-1 were significantly attenuated in diseased (27±3 mN, n=55) compared to normal (38±2 mN, n=68) artery, although this remained over 70% of control. There was no difference in potency (pD2 control=8.03±0.06; pD2 diseased=7.98±0.06). Finite element modelling of tensile ring tests resulted in hyperelastic shear modulus μ=2004±410 Pa and hardening exponent α=22.8±2.2 for normal wall and μ=2464±1075 Pa and α=38.3±6.7 for plaque tissue and distensibility of diseased vessels was decreased. Finite element modelling of active properties of both groups resulted in higher muscle contractile strain (represented by thermal reactivity) of the atherosclerotic artery model than the normal artery model. The models suggest that a change in muscle response to endothelin-1 occurs in atherosclerotic artery to increase its distensibility towards that seen in normal artery. SIGNIFICANCE: Our data suggest that an adaptation occurs in medial smooth muscle of atherosclerotic coronary artery to maintain distensibility of the vessel wall in the presence of endothelin-1. This may contribute to the vasospastic effect of locally increased endothelin-1 production that is reported in this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Settlements due to underground construction represent a risk for the architectural heritage, especially in The Netherlands, because of the combination of soft soil, fragile pile foundation and brittle, un-reinforced masonry façade. Modelling of soil-structure interaction is fundamental to assess the risk of building damage due to tunnelling. This paper presents results of finite element analyses carried out with different models for a simple masonry wall. Focus is paid on the comparison between coupled, uncoupled and semi-coupled analyses, in which the soil-structure interaction is represented in different ways. In particular, the implementation of a soil-structure interface model in the numerical analyses is analysed, in order to asses its validity. The aim of the research project is the development of a damage classification system for different building typologies.