999 resultados para variational characterisation
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
In this paper, applying the direct variational approach of first-order approximation to the capillary instability problem for the eases of rotating liquid column, toroid and films on both sides of cylinder, we have obtained the necessary and sufficient conditions for motion stability of the "cylindrical coreliquid-liquid-cylindrical shell" systems. The results obtained before are found to be special cases of the present investigation. At the same time, we have explained physical essence of rotating instability and settled a few disputes in previous investigations.
Resumo:
10 p.
Resumo:
222 p. : il.