997 resultados para variable message sign


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Los cambios sociodemográficos y el aumento de la esperanza de vida han dado lugar a un aumento de algunas enfermedades, incluyendo la enfermedad de Alzheimer. La enfermedad de Alzheimer no sólo afecta a la persona que padece dicha enfermedad, sino que también repercute en la familia. Los cuidadores familiares son los que, de manera mayoritaria, se hacen cargo de la atención de estos pacientes con un compromiso de 24 horas, con lo que implica hacer cambios en sus estilos de vida. Los objetivos de este estudio son describir las características socio-demográficas, determinar la sobrecarga de los cuidadores informales y evaluar la calidad de sueño de los cuidadores. Se realizará un estudio transversal que incluirá a 40 cuidadores de enfermos de Alzheimer, seleccionados por un muestreo no probabilístico de selección por cuotas. Los participantes serán los cuidadores informales de pacientes con la enfermedad de Alzheimer que estén en el estadío III o IV de dicha enfermedad. Nuestra variable dependiente será el sueño y como variable independiente la sobrecarga. El estudio se realizará en la asociación de familiares de Alzheimer de Bilbao (A.F.A - Bizkaia), dónde se captará a la muestra de estudio y donde se procederá a aplicar los cuestionarios pertinentes para dicho estudio. Para participar en el estudio es necesario que firmen el consentimiento informado. Los instrumentos que se utilizarán son el cuestionario de Pittsburg que evalúa la calidad de sueño y la escala de carga de Zarit. Para el análisis de datos se utilizará el programa SPSS 15.0. Palabras clave: enfermedad de Alzheimer, cuidadores, cuidadores familiares, demencia, sobrecarga, sueño.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Nd:glass regenerative amplifier has been set up to generate the pumping pulse with variable pulse width for an optical parametric chirped-pulse amplification (OPCPA) laser system. Each pulse of the pulse train from a cw self-mode-locking femtosecond Ti:sapphire oscillator is stretched to approximate to300 ps at 1062 nm to be split equally and injected into a nonlinear crystal and the Nd:glass regenerative amplifier, as the chirped signal pulse train and the seed pulse train of the pumping laser system, respectively. By adjusting the cavity length of the regenerative amplifier directly, the width of amplified pulse could be varied continuously from approximate to300 ps to approximate to3 ns. The chirped signal pulse for the OPCPA laser system and the seed pulse for the pumping laser system come from the same oscillator, so that the time jitter between the signal pulse and the pumping pulse in optical parametric amplification stages could be <10 ps. (C) 2003 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.

It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.

The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.

The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.

The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.

A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.

Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the functional role of syllables in sign language and how the different phonological combinations influence sign production. Moreover, the influence of age of acquisition was evaluated. Deaf signers (native and non-native) of Catalan Signed Language (LSC) were asked in a picture-sign interference task to sign picture names while ignoring distractor-signs with which they shared two phonological parameters (out of three of the main sign parameters: Location, Movement, and Handshape). The results revealed a different impact of the three phonological combinations. While no effect was observed for the phonological combination Handshape-Location, the combination Handshape-Movement slowed down signing latencies, but only in the non-native group. A facilitatory effect was observed for both groups when pictures and distractors shared Location-Movement. Importantly, linguistic models have considered this phonological combination to be a privileged unit in the composition of signs, as syllables are in spoken languages. Thus, our results support the functional role of syllable units during phonological articulation in sign language production.