872 resultados para uptake kinetics
Resumo:
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Resumo:
BACKGROUND: Urokinase plasminogen activator receptor (uPAR, CD87) is a widely distributed 55-kD, glycoprotein I-anchored surface receptor. On binding of its ligand uPA, it is known to increase leukocyte adhesion and traffic. Using genetically deficient mice, we explored the role of uPAR in platelet kinetics and TNF-induced platelet consumption. METHODS AND RESULTS: Anti-uPAR antibody stained platelets from normal (+/+) but not from uPAR-/- mice, as seen by fluorescence-activated cell sorter analysis. 51Cr-labeled platelets from uPAR-/- donors survived longer than those from +/+ donors when injected into a +/+ recipient. Intratracheal TNF injection induced thrombocytopenia and a platelet pulmonary localization, pronounced in +/+ but absent in uPAR-/- mice. Aprotinin, a plasmin inhibitor, decreased TNF-induced thrombocytopenia. TNF injection markedly reduced the survival and increased the pulmonary localization of 51Cr-labeled platelets from +/+ but not from uPAR-/- donors, indicating that it is the platelet uPAR that is critical for their response to TNF. As seen by electron microscopy, TNF injection increased the number of platelets and polymorphonuclear neutrophils (PMNs) in the alveolar capillaries of +/+ mice, whereas in uPAR-/- mice, platelet trapping was insignificant and PMN trapping was slightly reduced. Platelets within alveolar capillaries of TNF-injected mice were activated, as judged from their shape, and this was evident in +/+ but not in uPAR-/- mice. CONCLUSIONS: These results demonstrate for the first time the critical role of platelet uPAR for kinetics as well as for activation and endothelium adhesion associated with inflammation.
Resumo:
The purpose of this work was to acquire an overview of the infectious cycle of HAdV-41 in permissive HEK 293 cells and compare it to that observed with the prototype of the genus, Human adenovirus C HAdV-2. HEK 293 cells were infected with each virus separately and were harvested every 12 h for seven days. Infection kinetics were analysed using confocal and electronic microscopy. The results show that, when properly cultivated, HAdV-41 was not fastidious. It had a longer multiplication cycle, which resulted in the release of complete viral particles and viral stocks reached high titres. After 60 h of infection, the export of viral proteins from the infected cell to the extracellular milieu was observed, with a pattern similar to that previously described for HAdV-2 penton-base trafficking after 30 h of infection. HAdV-41 had a non-lytic cycle and the infection spread from the first infected cell to its neighbours. The release process of the viral particles is unknown. The results observed for HAdV-41 infection in HEK 293 cells show how different this virus is from the prototype HAdV-2 and provides information for the development of this vector for use in gene therapy.
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
A low digit ratio (2D:4D) and low 2D:4D in the right compared with the left hand (right-left 2D:4D) are thought to be determined by high in utero concentrations of testosterone, and are related to "masculine" traits such as aggression and performance in sports like running and rugby. Low right-left 2D:4D is also related to sensitivity to testosterone as measured by the number of cytosine-adenine-guanine triplet repeats in exon 1 of the androgen receptor gene. Here we show that low right-left 2D:4D is associated with high maximal oxygen uptake (VO2(max)), high velocity at VO2(max), and high maximum lactate concentration in a sample of teenage boys. We suggest that low right-left 2D:4D is linked to performance in some sports because it is a proxy of high sensitivity to prenatal and maybe also circulating testosterone and high VO2(max).
Resumo:
Here, we observed the uptake of membrane-impermeant molecules by cercariae as they penetrate the skin and are transformed into schistosomula. We propose that membrane-impermeant molecules, Lucifer Yellow, Propidium iodide and Hoechst 33258 enter the parasite through both thenephridiopore and the surface membrane and then diffuse throughout the body of the parasite. We present a hypothesis that the internal cells of the body of the schistosomulum represent a new host-parasite interface, at which skin-derived growth factors may stimulate receptors on internal membranes during transformation of the cercariae into the schistosomulum.
Resumo:
The aim of the present paper was to evaluate cyst formation and growth parameters of Borrelia garinii in a range of media differing in formulation and cost. A qualitative assessment of morphology and motility of B. garinii was conducted. All media were prepared aseptically and used in test tubes or Petri dishes. For each medium, the initial spirochete concentration was standardized to 10³ spirochets/mL. The following culture media were suitable to grow B. garinii: Barbour-Stoenner-Kelly, brain heart infusion and PMR. Growth was minimal at six weeks post-inoculation and maximum spirochete density was observed between 9-12 weeks. Often, the cultures developed cysts of different sizes, isolated or in groups, with a spiraled portion of variable sizes, mainly in unfavorable culture media. Brazilian Lyme disease-like illness, also known as Baggio-Yoshinari syndrome (BYS), is a new and interesting emerging tick-borne disease, caused by Borrelia burgdorferi sensu lato spirochetes, only during its cystic forms. It has been assumed that the peculiar clinical and laboratory features of BYS are consequential to the absence of a human sucker Ixodes ricinus complex tick at risk areas in Brazil, supporting the concept that the borrelia phenotypic expression pattern is modified as it is transmitted through the host.
Resumo:
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Resumo:
In this study, we investigated the expression and activity of liver cytochrome P450s (CYPs) and praziquantel (PZQ) kinetics in mice infected with Schistosoma mansoni. Swiss Webster (SW) mice of both genders were infected (100 cercariae) on postnatal day 10 and killed on post-infection days (PIDs) 30 or 55. Non-infected mice of the same age and sex served as controls. Regardless of mouse sex, infection depressed the activities of CYP1A [ethoxy/methoxy-resorufin-O-dealkylases (EROD/MROD)], 2B9/10 [pentoxy/benzyloxy-resorufin-O-dealkylases (PROD, BROD)], 2E1 [p-nitrophenol-hydroxylase (PNPH)] and 3A11 [erythromycin N-demethylase (END)] on PID 55 but not on PID 30. On PID 55, infection decreased liver CYP mRNA levels (real-time reverse transcription-polymerase chain reaction). On PID 30, whereas mRNA levels remained unaltered in males, they were depressed in females. Plasma PZQ (200 and 400 mg/kg body weight intraperitoneally) levels were measured (high-performance liquid chromatography) at different post-treatment intervals. In males and females, infection delayed the PZQ clearance on PID 55, but not on PID 30. Therefore, it can be concluded that schistosomiasis down-modulated CYP expression and activity and delayed PZQ clearance on PID 55, when a great number of parasite eggs were lodged in the liver. On PID 30, when egg-laying was initiated by the worms, no change of CYP expression and activity was found, except for a depression of CYP1A2 and 3A11 mRNAs in female mice.
Resumo:
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
Resumo:
Single nucleotide polymorphisms (SNPs) in the interleukin (IL)28B locus have been associated with a sustained virological response (SVR) in interferon-ribavirin (IFN-RBV)-treated chronic hepatitis C virus (HCV)-infected patients in European and African populations. In this study, the genotype frequency of two IL28B SNPs (rs129679860 and rs8099917) in a cohort of chronic HCV-monoinfected patients in Brazil was evaluated and the SNP sufficient to predict the treatment response outcome was determined. A total of 66 naïve genotype-1 chronic HCV-infected patients were genotyped and the associated viral kinetics and SVR were assessed. The overall SVR was 38%. Both the viral kinetics and SVR were associated with rs129679860 genotypes (CC = 62% vs. CT = 33% vs. TT = 18%, p = 0.016). However, rs8099917 genotypes were only associated with SVR (TT = 53% vs. TG = 33% vs. GG = 18%; p = 0.032). In this population, the analysis of a single SNP, rs12979860, successfully predicts SVR in the IFN-RBV treatment of HCV.
Resumo:
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Resumo:
In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.
Resumo:
Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis-Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.