931 resultados para ultra high energy photons and neutrinos
Resumo:
The influences of the isospin dependent in-medium nucleon-nucleon cross section and the MomentumDependent Interaction(MDI) on the isotope scaling have been investigated within the Isospin dependent Quantum Molecular Dynamics Model(IQMD). The results show that both the isospin dependent in-medium nucleon-nucleon cross section and the momentum interaction reduce the isoscaling parameter a appreciably, which means they decrease the dependence of yield ratios of two systems on the isospin difference between two systems.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
Within the Brueckner-Hartree-Fock framework, the equation of state and the properties of newborn neutron stars are investigated by adopting a realistic nucleon-nucleon interaction AV(18) supplemented with a microscopic three-body force or a phenomenological three-body force. The maximum mass of newborn neutron star and the proton fraction in the newborn beta-stable neutron-star matter are calculated. The neutrino-trapping and the three-body force effects are discussed, and the interplay between the effects of the trapped neutrino and the three-body force are especially explored. It is shown that neutrino trapping considerably affects the proton abundance and the equation of state of the newborn neutron star in both cases with and without the three-body forces. The effect of neutrino trapping remarkably enhances the proton abundance, and the contribution of the three-body force makes the equation of state of the newborn neutron star much stiffer at high densities and consequently increases the proton abundance strongly. The trapped neutrinos significantly reduce the influence of the three-body force on the proton abundance in newborn neutron stars.
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
The high-spin states of Pm-140 have been investigated through the reaction Te-126(F-19, 5n) at a beam energy of 90 MeV. A previous level scheme based on the 8(-) isomer has been updated with spin up to 23 (h) over bar. A total of 22 new levels and 41 new transitions were identified. Six collective bands were observed. Five of them were expanded or re-constructed, and one of them was newly identified. The systematic signature splitting and inversion of the yrast pi h(11/2)circle times vh(11/2) band in Pr and Pm odd-odd isotopes has been discussed. Based on the systematic comparison, two Delta I = 2 bands were proposed as double-decoupled bands; other two bands with strong Delta I = 1 M1 transitions inside the bands were suggested as oblate bands with gamma similar to -60 degrees; another band with large signature splitting has been proposed with oblate-triaxial deformation with gamma similar to -90 degrees. The characteristics for these bands have been discussed.
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
Ultra high molar mass polyethylene (UHPE) powder as polymerized in a slurry process has been studied, in its nascent state, after recrystallization on rapid cooling from the melt and after hot compression molding to a film, by DSC, effect of annealing the recrystallized specimen at 120 similar to 130 degreesC, morphology by polarizing optical microscopy and small angle X-ray scattering. Based on the experimental results obtained the macromolecular condensed state of the nascent UHPE powder is a rare case of a multi-chain condensed state of non-interpenetrating chains, involving interlaced extended chain crystalline layers and relaxed parallel chain amorphous layers. On melting, a nematic rubbery state of nanometer size domain resulted. The nematic-isotropic transition temperature was judged from literature data to be at least 220 degreesC, possibly higher than 300 degreesC, the exact temperature is however not sue because of chain degradation at such high temperatures. The recrystallization process from the melt is a crystallization from a nematic rubbery state. The drop of remelting peak temperature by 10 K of the specimen recrystallized from its melt as compared to the nascent state has its origin in the decrease both of the crystalline chain stem length and of the degree of crystallinity. The remelting peak temperature could be returned close to that of the nascent state by annealing at 120 similar to 130 degreesC.
Resumo:
Polytetrafluoroethylene (PTFE) has never been reported to form a network structure when subjected to high energy radiation. Results obtained in this work indicates that when irradiation is performed under 330-340-degrees-C in vacuo PTFE can be crosslinked
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.
Resumo:
The International Energy Agency has repeatedly identified increased end-use energy efficiency as the quickest, least costly method of green house gas mitigation, most recently in the 2012 World Energy Outlook, and urges all governing bodies to increase efforts to promote energy efficiency policies and technologies. The residential sector is recognised as a major potential source of cost effective energy efficiency gains. Within the EU this relative importance can be seen from a review of the National Energy Efficiency Action Plans (NEEAP) submitted by member states, which in all cases place a large emphasis on the residential sector. This is particularly true for Ireland whose residential sector has historically had higher energy consumption and CO2 emissions than the EU average and whose first NEEAP targeted 44% of the energy savings to be achieved in 2020 from this sector. This thesis develops a bottom-up engineering archetype modelling approach to analyse the Irish residential sector and to estimate the technical energy savings potential of a number of policy measures. First, a model of space and water heating energy demand for new dwellings is built and used to estimate the technical energy savings potential due to the introduction of the 2008 and 2010 changes to part L of the building regulations governing energy efficiency in new dwellings. Next, the author makes use of a valuable new dataset of Building Energy Rating (BER) survey results to first characterise the highly heterogeneous stock of existing dwellings, and then to estimate the technical energy savings potential of an ambitious national retrofit programme targeting up to 1 million residential dwellings. This thesis also presents work carried out by the author as part of a collaboration to produce a bottom-up, multi-sector LEAP model for Ireland. Overall this work highlights the challenges faced in successfully implementing both sets of policy measures. It points to the wide potential range of final savings possible from particular policy measures and the resulting high degree of uncertainty as to whether particular targets will be met and identifies the key factors on which the success of these policies will depend. It makes recommendations on further modelling work and on the improvements necessary in the data available to researchers and policy makers alike in order to develop increasingly sophisticated residential energy demand models and better inform policy.
Resumo:
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Resumo:
The Telescope Array is a detector of extensive air shower produced by ultra High energy cosmic ray. This detector is located on Utah, USA. The construction have been completed and the full operation has been running from March 2008. In this talk, the status of observation and our prospects are described. © 2010 American Institute of Physics.