843 resultados para threatened species management
Resumo:
Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (similar to 9%) compared to the contribution of each predictor set individually (similar to 20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.
Resumo:
Some species introduced into new geographical areas from their native ranges wreak ecological and economic havoc in their new environment. Although many studies have searched for either species or habitat characteristics that predict invasiveness of exotic species, the match between characteristics of the invader and those of members of the existing native community may be essential to understanding invasiveness. Here, we find that one metric, the phylogenetic relatedness of an invader to the native community, provides a predictive tool for invasiveness. Using a phylogenetic supertree of all grass species in California, we show that highly invasive grass species are, on average, significantly less related to native grasses than are introduced but noninvasive grasses. The match between the invader and the existing native community may explain why exotic pest species are not uniformly noxious in all novel habitats. Relatedness of invaders to the native biota may be one useful criterion for prioritizing management efforts of exotic species.
Resumo:
The populations of Capercaillie (Tetrao urogallus), the largest European grouse, have seriously declined during the last century over most of their distribution in western and central Europe. In the Jura mountains, the relict population is now isolated and critically endangered (about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for age and spatial structure as well as stochastic processes, to perform a viability analysis and explore management scenarios for this population, capitalizing on a 24 years-long series of field data. Simulations predict a marked decline and a significant extinction risk over the next century, largely due to environmental and demographic stochasticity (average values of life-history parameters would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also recruitment. The juvenile stage matters when local populations undergo extinctions, because it ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural strategy aimed at opening forest structure should improve the quality and surface of available patches, independent of their size and localization. Such measures are to be taken urgently, if the population is to be saved.
Resumo:
We report 13 new polymorphic microsatellite markers for the European green toad Bufo viridis viridis (B. viridis subgroup), a declining amphibian from Central, Southeastern and Eastern Europe. Diversity at these loci estimated for 19 individuals ranged from two to ten alleles. Most of these primers also cross-amplify in related West-Mediterranean green toad species (Bufo balearicus, B. siculus and B. boulengeri). These microsatellites will be useful for conservation genetics of threatened Bufo viridis viridis populations and evolutionary studies of green toad taxa in secondary contact to examine hybridization.
Resumo:
Interaction betweeen Telenomus remus and Trichogramma pretiosum in the management of Spodoptera spp. The use of egg parasitoids is a promising strategy for Integrated Pest Management (IPM), but different species of parasitoids have greater or lesser control efficiency, depending on the pest species. Recently, not only Anticarsia gemmatalis and Pseudoplusia includens but also Spodoptera cosmioides and S. eridania have been among the key Lepidoptera larvae attacking soybeans. This study evaluated the combination of Telenomus remus and Trichogramma pretiosum for parasitism of eggs of the Spodoptera complex, for better control efficiency and broader spectrum of action among the key pests of soybeans. The experiment was carried out under controlled environmental conditions (25 ± 2ºC; 70 ± 10% RH; and 14 h photophase) in a completely randomized experimental design with seven treatments and 10 replicates with S. frugiperda, S. cosmioides and S. eridania eggs. Each replicate consisted of one egg mass of each Spodoptera species, with approximately 100 eggs offered to the parasitoids. The treatments were: 1) 10 females of T. pretiosum; 2) nine females of T. pretiosum and one female of T. remus; 3) eight females of T. pretiosum and two females of T. remus; 4) seven females of T. pretiosum and three females of T. remus; 5) six females of T. pretiosum and four females of T. remus; 6) five females of T. pretiosum and five females of T. remus, and 7) 10 females of T. remus. The parameter evaluated was the percentage of parasitized eggs. Results showed that treatments combining both parasitoid species with only 1 T. remus for each 9 T. pretiosum (10%) and only 2 T. remus for each 8 T. pretiosum (20%) were enough to significantly increase the parasitism observed on eggs of S. cosmioides and S. frugiperda, respectively. This association of T. pretiosum and T. remus in different proportions is very promising for biological control in IPM programs because it provides wide spectrum of control.
Resumo:
Sarchophagid flies (Insecta, Diptera) from pig carcasses in Minas Gerais, Brazil, with nine new records from the Cerrado, a threatened Neotropical biome. The diversity of the Sarcophagidae fauna of the Cerrado biome, also know as the Brazilian Savanna, is still underestimated. In this research we collected flies in the state of Minas Gerais, Brazil, during a Forensic Entomology experiment. Samples were collected throughout the decomposition process of domestic pig (Sus scrofa Linnaeus) carcasses, and the experiments were conducted in areas of pasture and semideciduous forest. A total of 85,694 adult flesh flies belonging to 57 species were collected from all carcasses. New records for nine species of Sarcophaginae are provided, including the first record of Blaesoxipha (Acridiophaga) caridei (Brèthes, 1906) to Brazil, and new occurrences of the following species for the Cerrado and/or for the state of Minas Gerais: Blaesoxipha (Acanthodotheca) acridiophagoides (Lopes & Downs, 1951), Malacophagomyia filamenta (Dodge, 1964), Nephochaetopteryx orbitalis (Curran & Walley, 1934), Nephochaetopteryx cyaneiventris Lopes, 1936, Nephochaetopteryx pallidiventris Townsend, 1934, Oxysarcodexia occulta Lopes, 1946, Ravinia effrenata (Walker, 1861) and Sarcophaga (Neobellieria) polistensis (Hall, 1933).
Resumo:
ABSTRACT Stichelia pelotensis (Lepidoptera, Riodinidae) is an endemic and threatened butterfly from the Pampa biome in southern Brazil, and has not been recorded in its type locality in the last 56 years. Recently, a population was found in two sites from extreme south Brazil, Pelotas, Rio Grande do Sul state. These records are an important find given the conservation status of S. pelotensis, since all the information gathered is new and involve the natural history of this species. The information obtained is useful for the management, monitoring and conservation priorities of this species and its associated habitats, since its known distribution is restricted to a narrow area in the Rio Grande do Sul Coastal Plain inside this threatened biome in southern Brazil.
Resumo:
n the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.
Resumo:
The first breeding records of the Bee-eater in canton de Vaud was recorded in a temporarily disused gravel-pit in the Venoge valley (W Switzerland). In 1996 the reproduction of a single pair failed after the eclosion of the chicks during a long period of uninterrupted rain. In 1997, probably the same pair returned and raised 3 fledglings. In 1998, 4 pairs bred raising 20 feldglings. The site is particularly rich with insects and birds: 12 bird species of the red data list breed in the site and surrounding area. However, it is threatened by state project: the gravel-pit is planned to be filled in the coming years. Its future management in relation to the preservation of the Bee-eater and the other bird species on the red data list is presented and discussed.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.
Resumo:
According to prevailing ecological theory one would expect the most stable vegetation on sites which are least disturbed (Odum 1971). According to theory one would also expect the most diversity of species on undisturbed sites (Odum 1971). This stable and diverse community would be produced over a period of many years through a process of plant succession where annual herbs are replaced by perennial herbs and finally woody plants would come to dominate and perpetuate the community. Another ecological theory holds that the complexity (structure and species diversity) of a plant community is dependent upon the amount of disturbance to which it is subjected (Woodwell, 1970). According to this theory the normal succession of a plant community through its various stages may be arrested at some point depending upon the nature and severity of the disturbance. In applying these theories to roadside vegetation it becomes apparent that mass herbicide spraying and extensive mowing of roadsides has produced a relatively simple and unstable vegetation. It follows that if disturbances were reduced not only would the roadside plant community increase in stability but maintenance costs and energy usage would be reduced. In this study we have investigated several aspects of reduced disturbances on roadside vegetation. Research has centered on the effectiveness of spot spraying techniques on noxious weed control, establishment of native grass cover where ditch cleaning and other disturbance has left the bare soil exposed and the response of roadside vegetation when released from annual mass spraying.
Resumo:
This part of the EFISG guidelines focuses on non-neutropenic adult patients. Only a few of the numerous recommendations can be summarized in the abstract. Prophylactic usage of fluconazole is supported in patients with recent abdominal surgery and recurrent gastrointestinal perforations or anastomotic leakages. Candida isolation from respiratory secretions alone should never prompt treatment. For the targeted initial treatment of candidaemia, echinocandins are strongly recommended while liposomal amphotericin B and voriconazole are supported with moderate, and fluconazole with marginal strength. Treatment duration for candidaemia should be a minimum of 14 days after the end of candidaemia, which can be determined by one blood culture per day until negativity. Switching to oral treatment after 10 days of intravenous therapy has been safe in stable patients with susceptible Candida species. In candidaemia, removal of indwelling catheters is strongly recommended. If catheters cannot be removed, lipid-based amphotericin B or echinocandins should be preferred over azoles. Transoesophageal echocardiography and fundoscopy should be performed to detect organ involvement. Native valve endocarditis requires surgery within a week, while in prosthetic valve endocarditis, earlier surgery may be beneficial. The antifungal regimen of choice is liposomal amphotericin B +/- flucytosine. In ocular candidiasis, liposomal amphotericin B +/- flucytosine is recommended when the susceptibility of the isolate is unknown, and in susceptible isolates, fluconazole and voriconazole are alternatives. Amphotericin B deoxycholate is not recommended for any indication due to severe side effects.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
Contains information on the European Corn Borer, an introduced species that came to North America during the early 1900's from central Europe. The insect damages corn plants, as well as peppers, beans, potatoes and other plants, by feeding on leaves, stalk tunneling and ear damage. This brochure gives summaries of management tactics. This is North central regional extension publication no. 327 sponsored by Iowa State University Extension.
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.