980 resultados para thiobarbituric acid reactive substance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of serum uric acid (SUA) in cardio-metabolic conditions has long been contentious. It is still unclear if SUA is an independent risk factor or marker of cardio-metabolic conditions and most observed associations are not necessarily causal. This study aimed to further understand and explore the causal role of SUA in cardio-metabolic conditions using genetic and non-genetic epidemiological methods in population-based data. In the first part of this study, we found moderate to high heritability estimates for SUA and fractional excretion of urate (FEUA) suggesting the role of genetic factors in the etiology of hyperuricemia. With regards to the role of SUA on inflammatory markers (IMs), a strong positive association of SUA with C-reactive protein (CRP) and a weaker positive association with tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was observed, which was in part mediated by body mass index (BMI). These findings suggest that SUA may have a role in sterile inflammation. In view of the inconsistency surrounding the causal nature and direction of the relation between SUA and adiposity, we applied a bidirectional Mendelian randomization approach using genetic variants to decipher the association. The finding that elevated SUA is a consequence rather than a cause of adiposity was not totally unexpected and is compatible with the hypothesis that hyperinsulinemia, accompanying obesity, enhances renal proximal tubular reabsorption of uric acid. The fourth part of this study examined the relationship between SUA and blood pressure (BP) in young adults. The association between SUA and BP, significant only in females, was strongly attenuated upon adjustment for BMI. The possibility that BMI lies in the causal pathway may explain the attenuation observed in the associations of SUA with BP and IMs. Finally, a significant hockey-stick shaped association of SUA with social phobia in our data suggests a protective effect of SUA only up to a certain concentration. Although our study findings have shed some light on the uncertainty underlying the pathophysiology of SUA, more compelling evidence using longitudinal designs, randomized controlled trials and the use of robust genetic tools is warranted to increase our understanding of the clinical significance of SUA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tartraatti-resistentin happaman fosfataasin hiljentäminen RNAi menetelmällä: odottamaton vaikutus monosyytti-makrofagi linjan soluissa RNA interferenssi (RNAi) eli RNA:n hiljentyminen löydettiin ensimmäisenä kasveissa, ja 2000-luvulla RNAi menetelmä on otettu käyttöön myös nisäkässoluissa. RNAi on mekanismi, jossa lyhyet kaksi juosteiset RNA molekyylit eli siRNA:t sitoutuvat proteiinikompleksiin ja sitoutuvat komplementaarisesti proteiinia koodaavaan lähetti RNA:han katalysoiden lähetti RNA:n hajoamisen. Tällöin RNA:n koodaamaa proteiinia ei solussa tuoteta. Tässä työssä on RNA interferenssi menetelmän avuksi kehitetty uusi siRNA molekyylien suunnittelualgoritmi siRNA_profile, joka etsii lähetti RNA:sta geenin hiljentämiseen sopivia kohdealueita. Optimaalisesti suunnitellulla siRNA molekyylillä voi olla mahdollista saavuttaa pitkäaikainen geenin hiljeneminen ja spesifinen kohdeproteiinin määrän aleneminen solussa. Erilaiset kemialliset modifikaatiot, mm. 2´-Fluoro-modifikaatio, siRNA molekyylin riboosirenkaassa lisäsivät siRNA molekyylin stabiilisuutta veren plasmassa sekä siRNA molekyylin tehokkuutta. Nämä ovat tärkeitä siRNA molekyylien ominaisuuksia kun RNAi menetelmää sovelletaan lääketieteellisiin tarkoituksiin. Tartraatti-resistentti hapan fosfataasi (TRACP) on entsyymi, joka esiintyy luunsyöjäsoluissa eli osteoklasteissa, antigeenejä esittelevissä dendiriittisissä soluissa sekä eri kudosten makrofageissa, jotka ovat syöjäsoluja. TRACP entsyymin biologista tehtävää ei ole saatu selville, mutta oletetaan että TRACP entsyymin kyvyllä tuottaa reaktiivisia happiradikaaleja on tehtävä sekä luuta hajoittavissa osteoklasteissa sekä antigeenia esittelevissä dendriittisissä soluissa. Makrofageilla, jotka yliekpressoivat TRACP entsyymiä, on myös solunsisäinen reaktiivisten happiradikaalien tuotanto sekä bakteerin tappokyky lisääntynyt. TRACP-geenin hiljentämiseen tarkoitetut spesifiset DNA ja siRNA molekyylit aiheuttivat monosyytti-makrofagilinjan soluviljelymallissa TRACP entsyymin tuoton lisääntymistä odotusten vastaisesti. DNA ja RNA molekyylien vaikutusta TRACP entsyymin tuoton lisääntymiseen tutkittiin myös Tolllike reseptori 9 (TLR9) poistogeenisestä hiirestä eristetyissä monosyyttimakrofaagisoluissa. TRACP entsyymin tuoton lisääntyminen todettiin sekvenssistä ja TLR9:stä riippumattomaksi vasteeksi solun ulkopuolisia DNA ja RNA molekyylejä vastaan. Havainto TRACP entsyymin tuoton lisääntymisestä viittaa siihen, että TRACP entsyymillä on tehtävä solun immuunipuolustusjärjestelmässä.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by ¹H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), monoene anacardic acid (3), a-amirine (4), b-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between hyperglycemia and diabetic neuropathy has already been demonstrated in some studies. Among the theories proposed for its etiology the oxidative stress stands out. The performance of nitric oxide as a link between the metabolic and vascular neuropathogenic factors that triggers the diabetic neuropathy has already been put forward. This study aimed to assess the quantification and measurements of the cell body profile area (CBPA) of NADPH-diaphorase reactive (NADPH-dp) myenteric neurons of the jejunum of diabetic rats (induced by streptozotocin) supplemented with Ascorbic Acid (AA). These changes in the myenteric neurons seem to be related to the gastrointestinal disturbances observed in diabetes mellitus (DM). Twenty male Wistar rats (Rattus norvegicus) were distributed in 4 groups (n=5): controls (C), control supplemented (CS), diabetic (D), and diabetic suplemented (DS). DM was induced by estreptozotocin (50mg/kg body wt). One week after the induction and confirmation of the DM (glycemia exam), animals of the groups CS and DS received 50mg of AA three times a week by gavage. After 90 days of experiment, the animals were anesthetized with lethal thiopental dose (40mg/kg) and the collected jejunum processed for the histochemistry NADPH-diaphorase technique. Whole-mount preparations were obtained for quantitative and morphometric analysis of the myenteric neurons. A quantity of jejunum neurons in the Group D (96±7.5) was not different (P>0.05) from Group DS (116±8.08), C (92±9.7), and CS (81±5.4), but in Group DS the quantity was higher (P<0.05) than in Group C and CS. The CBPA of neurons from Group D (189.50±2.68µm²) and DS (195.92±3.75µm²) were lower (P<0.05) than from Group C (225.13±4.37µm²) and CS (210.23±3.15µm²). The streptozotocin-induced DM did not change the jejunum-ileum area, the jejunum myenteric plexus space organization and the density of NADPH-dp neurons. The 50g AA-supplementation, three times a week, during 90 days, did not decrease hyperglycemia; however, it had a neuroprotective effect on the myenteric neurons, minimizing the increase on the CBPA of NADPH-dp neurons and increasing the amount of NADPD-dp neurons.