438 resultados para theorems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, studies aimed at evaluating the unification of concepts and theorems of vector analysis that contributed to the understanding of physical problems in a more comprehensive and more concise than using vector calculus. We study the electrodinamics with differential forms. Were also presented Maxwell's relations with formalism of differential forms in addition allowing formulation one more geometric and generalized. Another feature observed during the study of formalism presented was the possibility of it serving as a substitute to the tensor formalism
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using linearized superfields, R4 terms in the Type II superstring effective action compactified on T2 are constructed as integrals in N = 2 D = 8 superspace. The structure of these superspace integrals allows a simple proof of the R4 non-renormalization theorems which were first conjectured by Green and Gutperle. © 1998 Elsevier Science B.V.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
The new result presented here is a theorem involving series in the three-parameter Mittag-Le er function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional di erential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Le er function.
Resumo:
During a long time, origami was associated with decoration and craft production of ornaments and figures. However, in the end of 20th century, it began to be studied by mathematicians who were looking for interrelationships between this art and science. Through disciplines like geometry, trigonometry, calculation and linear algebra, they generated a set of axioms and theorems that became possible specific conversion of origami in computational geometry and the development of several softwares. Thus, origami began to be applied in engineering and design studies of innovative product and the term “origamics” was created to demonstrate its interdisciplinary nature. In this article will be presented some works exploring the constructive principles of origami to contribute with the diffusion of origamics. In this way more professionals will be able to understand the scientific and technological potential of this art.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Topics include: Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon- Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration, Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon-Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration.
Resumo:
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.