986 resultados para sulfate-reducing bacteria
Resumo:
This review examines the potential of anions, in particular sulfate, to template the formation of complex molecular architectures. Until recently, sulfate has been largely overlooked in this area and the examples described herein demonstrate this anion’s versatility in templating the formation of a diverse range of molecular systems including macrocycles, helixes, molecular capsules, interpenetrated and interlocked assemblies such as catenanes. In addition sulfate has been shown to template the formation of interpenetrated structures on a range of solid surfaces including gold, polystyrene beads and silicate nanoparticles, highlighting the potential of this anion in the fabrication of functional sensory devices exhibiting highly selective binding behaviour.
Resumo:
Infant feeding is a complex behavior enacted in a risk adverse society. Despite ongoing communication and education strategies, breastfeeding rates in countries like Australia, the US, and the UK remain static, thus increasing the risk of short and long-term health problems. Health professionals and non-profit organizations recognize social marketing as an appropriate strategy for increasing breastfeeding duration since it addresses the shortfalls of education-only campaigns. Technology as an innovative alternative to mass media and education has the potential to reduce the social price of breastfeeding by assisting women to manage the identity and health risks associated with infant feeding. This paper reports findings from six focus groups that explored the risks associated with breastfeeding and the potential role of technology in ameliorating these risks. A key finding of this research was that technology has the potential to negate the impact of perceived uncertainty and lack of control associated with breastfeeding. The results indicated that future breastfeeding campaigns that are innovative in their approach and use technology may be more effective in changing breastfeeding behavior.
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
The removal of the sulfate anion from water using synthetic hydrotalcite (Mg/Al LDH) was investigated using powder x-ray diffraction (XRD) and thermogravimetric analysis (TG). Synthetic hydrotalcite Mg6Al2(OH)16(CO3)∙4H2O was prepared by the co-precipitation method from aluminum and magnesium chloride salts. The synthetic hydrotalcite was thermally activated to a maximum temperature of 380°C. Samples of thermally activated hydrotalcite where then treated with aliquots of 1000ppm sulfate solution. The resulting products where dried and characterized by XRD and TG. Powder XRD revealed that hydrotalcite had been successfully prepared and that the product obtained after treatment with sulfate solution also conformed well to the reference pattern of hydrotalcite. The d(003) spacing of all samples was found to be within the acceptable region for a LDH structure. TG revealed all products underwent a similar decomposition to that of hydrotalcite. It was possible to propose a reasonable mechanism for the thermal decomposition of a sulfate containing Mg/Al LDH. The similarities in the results may indicate that the reformed hydrotalcite may contain carbonate anion as well as sulfate. Further investigation is required to confirm this.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; manual pushing, StaminaLift Bed Mover (SBM) and Gzunda Bed Mover (GBM)were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the SBM, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the GBM. The reduction in lower back muscular activation levels and the load reducing effect of a more upright posture may result in lower incidence of lower back injury.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle. Indeed, due to the vehicles' design and the actuation modes usually under consideration for underwater plateforms the number of actuator switchings must be kept to a small value to insure feasibility and precision. This is the main objective of the algorithm presented in this paper. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six-degrees-of freedom and one is minimally actuated with control motions in the vertical plane only.
Resumo:
This paper describes the development and testing of a novel mill design to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by pushing bagasse upwards while juice drains downwards under gravity. The potential of the design to reduce bagasse moisture content has not been adequately established. The prototype mill had limited power available that prevented typical delivery nip compactions from being achieved. Tests conducted did show a reduction in bagasse moisture but that moisture reduction is less than expected under ideal conditions. Work on the mill design has ceased, at least for the foreseeable future. The design does have potential to reduce bagasse moisture content but presents some engineering challenges to establish a reliable, low maintenance design alternative.
Resumo:
Purpose: To study the effect of the size of the surface-coated polycaprolactone (PCL) microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from Dry Powder Inhaler (DPI) formulations. Methods: The microparticles were fabricated using an emulsion technique in four different sizes (25, 48, 104 and 150 μm) and later coated with Magnesium stearate (MgSt) and leucine. They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS from powder mixtures was determined by a Twin Stage Impinger (TSI). Results: As the carrier size increased from 25 μm to 150 μm, the FPF of the SS delivered by the coated PCL particles increased approximately four fold. A linear relationship was found between the FPF and Volume mean Diameter (VMD) of the particles over this range. Conclusions: The dispersion behaviour of SS from PCL carriers was dependent on the inherent size of the carriers and the increased FPF of SS with increased carrier size probably reflects the higher mechanical forces produced due to the carrier-carrier collisions or collisions between the carrier particles and the internal walls of the inhaler during aerosolization.
Resumo:
Many governments throughout the world rely heavily on traffic law enforcement programs to modify driver behaviour and enhance road safety. There are two related functions of traffic law enforcement, apprehension and deterrence, and these are achieved through three processes: the establishment of traffic laws, the policing of those laws, and the application of penalties and sanctions to offenders. Traffic policing programs can vary by visibility (overt or covert) and deployment methods (scheduled and non-scheduled), while sanctions can serve to constrain, deter or reform offending behaviour. This chapter will review the effectiveness of traffic law enforcement strategies from the perspective of a range of high-risk, illegal driving behaviours including drink/drug driving, speeding, seat belt use and red light running. Additionally, this chapter discusses how traffic police are increasingly using technology to enforce traffic laws and thus reduce crashes. The chapter concludes that effective traffic policing involves a range of both overt and covert operations and includes a mix of automatic and more traditional manual enforcement methods. It is important to increase both the perceived and actual risk of detection by ensuring that traffic law enforcement operations are sufficiently intensive, unpredictable in nature and conducted as widely as possible across the road network. A key means of maintaining the unpredictability of operations is through the random deployment of enforcement and/or the random checking of drivers. The impact of traffic enforcement is also heightened when it is supported by public education campaigns. In the future, technological improvements will allow the use of more innovative enforcement strategies. Finally, further research is needed to continue the development of traffic policing approaches and address emerging road safety issues.
Resumo:
The incidence of sleep-related crashes has been estimated to account for approximately 20% of all fatal and severe crashes. The use of sleepiness countermeasures by drivers is an important component to reduce the incidence rates of sleep-related crashes. Taking a brief nap and stopping for a rest break are two highly publicised countermeasures for driver sleepiness and are also believed by drivers to be the most effective countermeasures. Despite this belief, there is scarce evidence to support the utility of these countermeasures for reducing driver sleepiness levels. Therefore, determining the effectiveness of these countermeasures is an important road safety concern. The current study utilised a young adult sample (N = 20) to investigate the effectiveness of a nap and an active rest break. The countermeasures effects were evaluated by physiological, behavioural (hazard perception skill), and subjective measures previously found sensitive to sleepiness. Participants initially completed two hours of a simulated driving task followed by a 15 minute nap opportunity or a 15 minute active rest break that included 10 minutes of brisk walking. After the break, participants completed one final hour of the simulated driving task. A within-subjects design was used so that each participant completed both the nap and the active rest break conditions on separate occasions. The analyses revealed that only the nap break provided any meaningful reduction in physiological sleepiness, reduced subjective sleepiness levels, and maintained hazard perception performance. In contrast, the active rest break had no effect for reducing physiological sleepiness and resulted in a decrement in hazard perception performance (i.e., an increase of reaction time latencies), with a transient reduction in subjective sleepiness levels. A number of theoretical, empirical and practical issues were identified by the current study.
Resumo:
Little past empirical support has been found for the efficacy of motorcycle rider training as a road safety countermeasure. However, it has been argued that rider training should focus more particularly on the psychosocial factors that influence risk taking behaviour in addition to the traditional practice of developing vehicle-handling skills. This paper examines how rider training to reduce risk taking could be guided by appropriate theories. Two fundamental perspectives are examined: firstly training can be considered in terms of behaviour change, and secondly in terms of adult learning. Whilst behaviour change theories assume some pre-existing level of dysfunctional behaviour, an adult learning perspective does not necessarily carry this assumption. This distinction in perspectives conceptually aligns with the notions of intervention and prevention (respectively), with possible implications for specific target groups for pre-licence and post-licence training. The application of the Theory of Reasoned Action (Ajzen & Fishbein, 1975, 1980) and Transformative Learning Theory (Mezirow, 1997) to a pre-licence rider training program in Queensland, Australia is discussed.