878 resultados para student interaction with Waterville Jews
Resumo:
Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.
Resumo:
The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.
Resumo:
The objective of this thesis is to report the behaviour of mammalian cells with biocompatible synthetic polymers with potential for applications to the human body. Composite hydrogel materials were tested as possible keratoprosthetic devices. It was found that surface topography is an important consideration, pores, channels and fibres exposed on the surface of the hydrogels tested can have significant effects on the extent of cell adheson and proliferation. It is recommended that the core component is fabricated out of one of the following to provide a non cell adhesive base; A8, A11, A13, A22, A23. The haptic periphery fabricated out of one of the following would provide a cell adhesive composite; A16, A30, A33, A37, A38, A42, A43, A44. The presence of vitronectin in the ocular tissue appears to lead to higher cell adhesion to the posterior surface of a contact lens when compared to the anterior surface. Group IV contact lenses adhere more cells than Group II contact lenses - this may indicate that more protein (including vitronectin) is able to adhere to the contact lens due to the Group IV contact lenses high water content and ionic hydrogel matrix. Artificial lung surfactant analogues were found to be non cytotoxic but also decreased cell proliferation when tested at higher concentrations. Poly(lysine ethyl ester adipamide) [PLETESA] had the most favourable response on cell proliferation and commercial styrene/maleic anhydride (pMA/STY sp2) the most pronounced inhibitory response. The mode of action that decreases cell proliferation appears to be through membrane destabilization. Tissue culture well plates coated with PLETESA allowed cells to adhere in a concentration dependent manner, multilaminar liposomes possibly of PLETESA were observed in solution in PLETESA coated wells. Polyhydroxybutryate (PHB) and polyhydroxyvalerate (PHV) blends that contained hydroxyapatite were found to be the most cell adhesive material of those materials tested. The blends that were most susceptible to degradation adhered the most cells in initial stages of degradation. The initial slight increase in cell adhesion may be due to the increased rugosity of the material. As the degradation continued the number of cells adhering to the samples decreased, this may indicate that the polarity was inhibitory to cell adhesion during the later stages of degradation.
Resumo:
The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.
Resumo:
Elevated amyloid-β peptide (Aβ) and loss of nicotinic acetylcholine receptors (nAChRs) stand prominently in the etiology of Alzheimer's disease (AD). Since the discovery of an Aβ - nAChR interaction, much effort has been expended to characterize the consequences of high versus low concentrations of Aβ on nAChRs. This review will discuss current knowledge on the subject at the molecular, cellular, and physiological levels with particular emphasis on understanding how Aβ - nAChR interaction may contribute to normal physiological processes as well as the etiology of AD. ©2010 Bentham Science Publishers Ltd.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
Transglutaminase 2 has been postulated to be involved in the pathogenesis of central nervous system neurodegenerative disorders. However, its role in neuronal cell death remains to be elucidated. Excitotoxicity is a common event underlying neurodegeneration. We aimed to evaluate the protein targets for transglutaminase 2 in cell response to NMDA-induced excitotoxic stress, using SH-SY5Y neuroblastoma cells which express high tranglutaminase 2 levels upon retinoic acid-driven differentiation toward neurons. NMDA-evoked calcium increase led to transglutaminase 2 activation that mediated cell survival, as at first suggested by the exacerbation of NMDA toxicity in the presence of R283, a synthetic competitive inhibitor of transglutaminase active site. Assays of R283-mediated transglutaminase inhibition showed the involvement of enzyme activity in NMDA-induced reduction in protein basal levels of pro-apoptotic caspase-3 and the stress protein Hsp20. However, this occurred in a way different from protein cross-linking, given that macromolecular assemblies were not observed in our experimental conditions for both proteins. Co-immunoprecipitation experiments provided evidence for the interaction, in basal conditions, between transglutaminase 2 and Hsp20, as well as between Hsp20 and Hsp27, a major anti-apoptotic protein promoting caspase-3 inactivation and degradation. NMDA treatment disrupted both these interactions that were restored upon transglutaminase 2 inhibition with R283. These results suggest that transglutaminase 2 might be protective against NMDA-evoked excitotoxic insult in neuronal-like SH-SY5Y cells in a way, independent from transamidation that likely involves its interaction with the complex Hsp20/Hsp27 playing a pro-survival role. © 2011 Springer-Verlag.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) cause peptic ulcer disease, but whether they interact with Helicobacter pylori to promote damage is controversial. Moreover, the reported induction of apoptosis in gastric cells by H. pylori lipopolysaccharide (LPS) (10-9 g /ml) contrasts with studies showing low immunological potency of this LPS. Therefore, the effects of LPS from H. pylori NCTC 11637 and Escherichia coli 0111:B4 on apoptosis in a primary culture of guinea-pig gastric mucous cells were investigated in the presence and absence of the NSAID, ibuprofen. Cell loss was estimated by a crystal violet assay, and apoptosis determined from caspase activity and from condensation and fragmentation of nuclei. Exposure to E. coli LPS for 24 h caused cell loss and enhanced apoptotic activity at concentrations ≥ 10-9 g/ml, but similar effects were only obtained with H. pylori LPS at concentrations ≥10-6 g/ml. Although ibuprofen (250 μM) caused cell loss and apoptosis, addition of either E. coli or H. pylori LPSs further enhanced these effects. In conclusion, LPS and ibuprofen interact to enhance gastric cell loss and apoptosis. In such interactions, E. coli LPS is more potent than that of H. pylori. The low potency of H. pylori LPS may contribute to a chronic low-grade gastritis that can be enhanced by the use of NSAIDs. © W. S. Maney & Son Ltd.
Resumo:
Poly(ε-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. As-spun PCL fibres exhibited a mean strength and stiffness of 7.9 MPa and 0.1 GPa, respectively and a rough, porous surface morphology. Cold drawing to an extension of 500% resulted in increases in fibre strength (43 MPa) and stiffness (0.3 GPa) and development of an oriented, fibrillar surface texture. The proliferation rate of Swiss 3T3 mouse fibroblasts and C2C12 mouse myoblasts on as-spun, 500% cold-drawn and gelatin-modified PCL fibres was determined in cell culture to provide a basic measure of the biocompatibility of the fibres. Proliferation of both cell types was consistently higher on gelatin-coated fibres relative to as-spun fibres at time points below 7 days. Fibroblast growth rates on cold-drawn PCL fibres exceeded those on as-spun fibres but myoblast proliferation was similar on both substrates. After 1 day in culture, both cell types had spread and coalesced on the fibres to form a cell layer, which conformed closely to the underlying topography. The high fibre compliance combined with a potential for modifying the fibre surface chemistry with cell adhesion molecules and the surface architecture by cold drawing to enhance proliferation of fibroblasts and myoblasts, recommends further investigation of gravity-spun PCL fibres for 3-D scaffold production in soft tissue engineering. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Approach and Results - Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Objective - Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/ nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Conclusions - Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.
Resumo:
This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.
Resumo:
We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.
Resumo:
The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc-AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2.
Resumo:
This study was conducted during the 1994-1995 academic year. Seven social work education programs in the state of Florida, all accredited by the Council on Social Work Education, participated in this study. Graduate and undergraduate social work students in child welfare field placements, and their field instructors, were surveyed during the Spring 1995 semester to assess their satisfaction with field placements in this area and the relationship of this satisfaction to employment interests and field placement recommendations.^ The majority of social work students responding to this survey were generally satisfied with several aspects of their field placements--the learning, field work program, field instructor, child welfare agency, and overall field experience. The field instructors were generally more satisfied than the students, but only statistically different from the students in the areas of satisfaction with the field work program and the child welfare agency. Multiple regression analysis revealed that learning assignment opportunities, field instructor relationship characteristics, placement preference, and pre-placement interview contributed to the prediction of student satisfaction.^ Student satisfaction in field placement was significantly related to the acceptance of employment, if offered, and the recommendation of the field placement to other students. Logistic regression analysis revealed that satisfaction with the child welfare agency was the greatest contributor to the prediction of acceptance of employment, and satisfaction with the field work program was the greatest contributor to the prediction of field placement recommendation. ^