949 resultados para special-purpose functionalized conjugated polymers
Resumo:
Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.
Resumo:
Carbon nanotube polycarbonate composites with controlled nanotube-bundle size are prepared by dispersion with conjugated polymers followed by blending with polycarbonate. The composite has uniform sub-micrometer nanotube bundles in high concentration, shows strong nonlinear optical absorption, and generates 193 fs pulses when used as passive mode-locker in a fiber laser.
Resumo:
In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.
Resumo:
A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The atomistic molecular dynamics representation is smoothly connected with a statistical continuum hydrodynamics description. The system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the atoms move partly as atomistic particles, and at the same time follow the hydrodynamic flows. The corresponding contributions are controlled by a parameter, which is defined as an arbitrary function of space and time, thus, allowing an effective separation of the atomistic 'core' and continuum 'environment'. To fill the scale gap between the atomistic and the continuum representations our special purpose computer for molecular dynamics, MDGRAPE-4, as well as GPU-based computing were used for developing the framework. These hardware developments also include interactive molecular dynamics simulations that allow intervention of the modelling through force-feedback devices.
Resumo:
In an effort to reduce the cost and size of government public service delivery has become more decentralized, flexible and responsive. Public entrepreneurship entailed, among other things, the establishment of special-purpose governments to finance public services and carry out development projects. Community Development Districts (CDDs) are a type of special-purpose governments whose purpose is to manage and finance infrastructure improvements in the State of Florida. They have important implications for the way both growth management and service delivery occur in the United States. This study examined the role of CDDs for growth management policy and service delivery by analyzing the CDD profile and activity, the contribution of CDDs to the growth management and infrastructure development as well as the way CDD perceived pluses and minuses impact service delivery. The study used a mixed methods research approach, drawing on secondary data pertaining to CDD features and activity, semi-structured interviews with CDD representatives and public officials as well as on a survey of public officials within the counties and cities that have established CDDs. Findings indicated that the CDD institutional model is both a policy and a service delivery tool for infrastructure provision that can be adopted by states across the United States. Results showed that CDDs inhibit rather than foster growth management through their location choices, type and pattern of development. CDDs contributed to the infrastructure development in Florida by providing basic infrastructure services for the development they supported and by building and dedicating facilities to general-purpose governments. Districts were found to be both funding mechanisms and management tools for infrastructure services. The study also pointed to the fact that specialized governance is more responsive and more flexible but less effective than general-purpose governance when delivering services. CDDs were perceived as being favorable for developers and residents and not as favorable for general-purpose governments. Overall results indicated that the CDD is a flexible institutional mechanism for infrastructure delivery which has both advantages and disadvantages. Decision-makers should balance districts’ institutional flexibility with their unintended consequences for growth management when considering urban public policies.
Resumo:
The Financial Accounting Standards Board (FASB) issued Interpretation No. 46 (FIN 46), Consolidation of Variable Interest Entities – An Interpretation of ARB No. 51, in January 2003 and revised it in December 2003, with the objective to improve the transparency of financial information. Under FIN 46, companies are required to consolidate variable interest entities (VIEs) on financial statements if they are the primary beneficiaries of the VIEs. This dissertation empirically examines whether the implementation of this new financial reporting guidance affects firms’ accruals quality and investment efficiency. A manually collected sample comprised of firms affected by FIN 46 and firms disclosing no material impact from FIN 46 is used in the empirical analyses.The first part of the dissertation investigates the effects of FIN 46 on accruals quality. By using different accrual quality measures in prior studies, this study found that firms affected by FIN 46 experienced a decrease in accrual quality compared to firms reporting no material impact from FIN 46. Among the firms affected by FIN 46, firms consolidating VIEs were compared with firms terminating or restructuring VIEs. The accruals quality of firms consolidating VIEs was found to be lower than that of firms terminating or restructuring VIEs. These results are consistent in tests using alternative control samples.The second part of this dissertation examines the effects of FIN 46 on investment efficiency. Mixed results were found from using two different proxies used in prior literature. Using the investment-cash flow sensitivity to proxy for investment efficiency, firms affected by FIN 46 experienced a decrease in investment efficiency compared to firms reporting no material impact. It was also found that higher investment-cash flow sensitivity for firms consolidating VIEs during post-FIN 46 periods compared to both the no-impact firms and the matched pair control sample. Contrasting results were found when the deviation from expected investment is used as another proxy for investment efficiency. Empirical analyses show that FIN 46 firms experienced improved investment efficiency measured by the deviation from expected investment after their adoption of FIN 46. This study also provides explanations for the opposite results from the two different proxies.
Resumo:
Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.
Resumo:
Les petites molécules de type p à bandes interdites étroites sont de plus en plus perçues comme des remplaçantes possibles aux polymères semi-conducteurs actuellement utilisés conjointement avec des dérivés de fullerènes de type n, dans les cellules photovoltaïques organiques (OPV). Par contre, ces petites molécules tendent à cristalliser facilement lors de leur application en couches minces et forment difficilement des films homogènes appropriés. Des dispositifs OPV de type hétérojonction de masse ont été réalisés en ajoutant différentes espèces de polymères semi-conducteurs ou isolants, agissant comme matrices permettant de rectifier les inhomogénéités des films actifs et d’augmenter les performances des cellules photovoltaïques. Des polymères aux masses molaires spécifiques ont été synthétisés par réaction de Wittig en contrôlant précisément les ratios molaires des monomères et de la base utilisée. L’effet de la variation des masses molaires en fonction des morphologies de films minces obtenus et des performances des diodes organiques électroluminescentes reliées, a également été étudié. La microscopie électronique en transmission (MET) ou à balayage (MEB) a été employée en complément de la microscopie à force atomique (AFM) pour suivre l’évolution de la morphologie des films organiques minces. Une nouvelle méthode rapide de préparation des films pour l’imagerie MET sur substrats de silicium est également présentée et comparée à d’autres méthodes d’extraction. Motivé par le prix élevé et la rareté des métaux utilisés dans les substrats d’oxyde d’indium dopé à l’étain (ITO), le développement d’une nouvelle méthode de recyclage eco-responsable des substrats utilisés dans ces études est également présenté.
Resumo:
Les petites molécules de type p à bandes interdites étroites sont de plus en plus perçues comme des remplaçantes possibles aux polymères semi-conducteurs actuellement utilisés conjointement avec des dérivés de fullerènes de type n, dans les cellules photovoltaïques organiques (OPV). Par contre, ces petites molécules tendent à cristalliser facilement lors de leur application en couches minces et forment difficilement des films homogènes appropriés. Des dispositifs OPV de type hétérojonction de masse ont été réalisés en ajoutant différentes espèces de polymères semi-conducteurs ou isolants, agissant comme matrices permettant de rectifier les inhomogénéités des films actifs et d’augmenter les performances des cellules photovoltaïques. Des polymères aux masses molaires spécifiques ont été synthétisés par réaction de Wittig en contrôlant précisément les ratios molaires des monomères et de la base utilisée. L’effet de la variation des masses molaires en fonction des morphologies de films minces obtenus et des performances des diodes organiques électroluminescentes reliées, a également été étudié. La microscopie électronique en transmission (MET) ou à balayage (MEB) a été employée en complément de la microscopie à force atomique (AFM) pour suivre l’évolution de la morphologie des films organiques minces. Une nouvelle méthode rapide de préparation des films pour l’imagerie MET sur substrats de silicium est également présentée et comparée à d’autres méthodes d’extraction. Motivé par le prix élevé et la rareté des métaux utilisés dans les substrats d’oxyde d’indium dopé à l’étain (ITO), le développement d’une nouvelle méthode de recyclage eco-responsable des substrats utilisés dans ces études est également présenté.
From amphiphilic block copolymers to ferrocenyl-functionalized polymers for biosensoric applications
Resumo:
The present thesis can be divided in three main parts. In all parts new polymer architecturesrnwere synthesized and characterized concerning their special features.rnThe first part will emphasize the advantage of a polystyrene-block-(hyperbranchedrnpolyglycerol) copolymer in comparison to an analogue polystyrene-block-(linear polyglycerol)rncopolymer. Therefore a synthethic route to prepare linear block copolymersrnhas been developed. Two strategies were examined. One strategy was based on thernclassic, sequential anionic polymerization; the second strategy was based on arn“Click-Chemistry” coupling reaction. In a following step glycidol was hypergraftedrnfrom these block copolymers by applying a hypergrafting reaction with glycidol. Thernbehavior of the amphiphilic block copolymers synthesized was studied in differentrnsolvents. Furthermore the polarity of the solvent was changed to form the correspondingrninverse micelles. DLS, SLS, SEC-MALLS-VISCO, AFM and Cyro TEMrnmeasurements were performed to obtain a visual image from the appearance of thernaggregates. It was found that a linear-hyperbranched architecture is necessary, ifrnwell defined, monodisperse aggregates are required, e.g. for the preparation of orderedrnnanoarrays. Linear-linear block copolymers formed only polydisperse aggregates.rnAdditionally it was found that size distribution could be improved dramaticallyrnby passing the aggregates through a SEC column with large pores. The SEC columnsrnacted like a template in which the aggregates adopt a more stable conformation.rnIn the second part anionic polymerization was employed to synthesize silaneendfunctionalizedrnmacromonomers with different molecular weights based on polybutadienernand polyisoprene. These were polymerized by a hydrosilylation reaction inrnbulk to obtain branched polymers, using Karstedt’s catalyst. Surprisingly the additionrnof monofunctional silanes during the polymerization had only a minimal effect concerningrnthe degree of polymerization. It was possible to introduce silanes without increasingrnthe overall number of reaction steps by a very convenient “pseudo-copolymerization”rnmethod. All branched polymers were analyzed by SEC, SEC-MALLS,rnSEC-viscometry, 1H-NMR-spectroscopy and DSC concerning their branching ratio.rnThe branching parameters for the branched polymers exhibited similar characteristicsrnas hyperbranched polymers based on AB2 monomers. Detailed kinetic study showedrnthat the polymerization occurred very rapidly in comparison to the hydrosilylation polymerizationrnof classical AB2 type carbosilanes monomers.rnThe last part will deal with ferrocenyl-functionalized polymers. On the one hand,rnferrocenyl-functionalized polyglycerols (PG) were studied. Esterification of PGs withrndifferent molecular weight using ferrocenemonocarboxylic acid gave the ferrocenylrnfuntionalized polymers in high yields. On the other hand three different block copolymersrnwere prepared with different ratios of styrene to butadiene units (10:1, 4:1, 2:1).rnThe double bonds of the 1,2-PB block were hydrosilylated using silanes bearing onern(HSiMe2Fc) or two (HSiMeFc2) ferrocene units. High degrees of functionalizationrnwere obtained (up to 83 %). In this manner, six different ferrocenyl-rich block copolymersrnwith different fractions of ferrocene were prepared and analyzed, employingrnNMR-spectroscopy, SEC, SEC/MALLS/viscometry, DLS and cyclic voltammetry. Thernredox properties of the studied polymers varied primarily with the nature of the silanernunit attached. Additionally, the redox properties in solution of the studied polymersrnwere influenced by the block length ratio of the block copolymers. Unexpectedly, withrnincreasing block length of the ferrocenyl block the fraction of active ferrocenes decreased.rnNevertheless, in case of thin monolayer films this behaviour was not observed.rnAll polymers (PG and PS-b-PB based) exhibited good electrochemical propertiesrnin a wide range of solvents, which rendered them very interesting for biosensoricrnapplications.
Resumo:
Novel amphiphilic poly(meta-phenylene)s were prepared by an oxidative coupling approach. These polymers were synthesized to shed light on their solution properties with special emphasis on aggregation and folding behavior. The polymers were characterized by NMR spectroscopy and molecular weights were determined by Gel Permeation Chromatography using Universal calibration. Literature studies revealed that the backbone of these PMPs can be helical moreover, the light emitting properties of this conjugated polymer can be used as a handle to study the possible aggregation or self-assembling behavior. In this report we show the synthesis, characterization and preliminary aggregation properties that points out that one of the synthesized PMP behave as a polysoap.
Resumo:
Two porous organic polymers decorated with the amide functionality were synthesized mechanochemically and their properties were compared with the ones prepared by conventional solution mediated method. All the POPs were subjected to gas and water vapor sorption studies. The mechanochemically synthesized POPs have less surface area and show moderate adsorption properties compared to the solution mediated POPs. The amide based POPs show remarkable stability in water and concentrated acids.
Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
The Gibbs free energies and equations of state of polymers with special molar mass distributions, e.g., Flory distribution, uniform distribution and Schulz distribution, are derived based on a lattice fluid model. The influence of the polydispersity (or t