854 resultados para sparse Bayesian regression
Resumo:
A wide range of numerical models and tools have been developed over the last decades to support the decision making process in environmental applications, ranging from physical models to a variety of statistically-based methods. In this study, a landslide susceptibility map of a part of Three Gorges Reservoir region of China was produced, employing binary logistic regression analyses. The available information includes the digital elevation model of the region, geological map and different GIS layers including land cover data obtained from satellite imagery. The landslides were observed and documented during the field studies. The validation analysis is exploited to investigate the quality of mapping.
Resumo:
Background Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
Robust Huber type regression and testing of linear hypotheses are adapted to statistical analysis of parallel line and slope ratio assays. They are applied in the evaluation of results of several experiments carried out in order to compare and validate alternatives to animal experimentation based on embryo and cell cultures. Computational procedures necessary for the application of robust methods of analysis used the conversational statistical package ROBSYS. Special commands for the analysis of parallel line and slope ratio assays have been added to ROBSYS.
Resumo:
Background The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication.
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.
Resumo:
AIM: This study aims to investigate the clinical and demographic factors influencing gentamicin pharmacokinetics in a large cohort of unselected premature and term newborns and to evaluate optimal regimens in this population. METHODS: All gentamicin concentration data, along with clinical and demographic characteristics, were retrieved from medical charts in a Neonatal Intensive Care Unit over 5 years within the frame of a routine therapeutic drug monitoring programme. Data were described using non-linear mixed-effects regression analysis ( nonmem®). RESULTS: A total of 3039 gentamicin concentrations collected in 994 preterm and 455 term newborns were included in the analysis. A two compartment model best characterized gentamicin disposition. The average parameter estimates, for a median body weight of 2170 g, were clearance (CL) 0.089 l h(-1) (CV 28%), central volume of distribution (Vc ) 0.908 l (CV 18%), intercompartmental clearance (Q) 0.157 l h(-1) and peripheral volume of distribution (Vp ) 0.560 l. Body weight, gestational age and post-natal age positively influenced CL. Dopamine co-administration had a significant negative effect on CL, whereas the influence of indomethacin and furosemide was not significant. Both body weight and gestational age significantly influenced Vc . Model-based simulations confirmed that, compared with term neonates, preterm infants need higher doses, superior to 4 mg kg(-1) , at extended intervals to achieve adequate concentrations. CONCLUSIONS: This observational study conducted in a large cohort of newborns confirms the importance of body weight and gestational age for dosage adjustment. The model will serve to set up dosing recommendations and elaborate a Bayesian tool for dosage individualization based on concentration monitoring.
Resumo:
Fibromyalgia is associated with an increased rate of mortality from suicide. In fact, this disease is associated with several characteristics that are linked to an increased risk of suicidal behaviors, such as being female and experiencing chronic pain, psychological distress, and sleep disturbances. However, the literature concerning suicidal behaviors and their risk factors in fibromyalgia is sparse. The objectives of the present study were to evaluate the prevalence of suicidal ideation and the risk of suicide in a sample of patients with fibromyalgia compared with a sample of healthy subjects and a sample of patients with chronic low-back pain. We also aimed to evaluate the relevance of pain intensity, depression, and sleep quality as variables related to suicidal ideation and risks. Logistic regression was applied to estimate the likelihood of suicidal ideation and the risk of suicide adjusted by age and sex. We also used two logistic regression models using age, sex, pain severity score, depression severity, sleep quality, and disease state as independent variables and using the control group as a reference. Forty-four patients with fibromyalgia, 32 patients with low-back pain, and 50 controls were included. Suicidal ideation, measured with item 9 of the Beck Depression Inventory, was almost absent among the controls and was low among patients with low-back pain; however, suicidal ideation was prominent among patients with fibromyalgia (P<0.0001). The risk of suicide, measured with the Plutchik Suicide Risk Scale, was also higher among patients with fibromyalgia than in patients with low-back pain or in controls (P<0.0001). The likelihood for suicidal ideation and the risk of suicide were higher among patients with fibromyalgia (odds ratios of 26.9 and 48.0, respectively) than in patients with low-back pain (odds ratios 4.6 and 4.7, respectively). Depression was the only factor associated with suicidal ideation or the risk of suicide.