892 resultados para smart border
Resumo:
Drawing upon European industry and country case studies, this paper investigates the scope and drivers of cross-border real estate development. It is argued that the real estate development process encompasses a diverse range of activities and actors. It is inherently localised, the production process is complex and emphermal, and the outputs are heterogeneous. It analyses a transactions database of European real estate markets to provide insights into the extent of, and variations in, market penetration by non-domestic real estate developers. The data were consistent with the expectation that non-domestic real estate developers from mature markets would have a high level of market penetration in immature markets. Compared to western European markets, the CEE real estate office sales by developers were dominated by US, Israeli and other EU developers. This pattern is consistent with the argument that non-domestic developers have substantial Dunning-type ownership advantages when entering immature real estate markets. However, the data also suggested some unexpected patterns. Relative to their GDP, Austria, Belgium, Denmark, Sweden, Netherlands and Israel accounted for large proportions of sales by developers. All are EU countries (except Israel) with small, open, affluent, highly traded economies. Further, the data also indicate that there may be a threshold where locational disadvantages outweigh ownership advantages and deter cross-border real estate development.
Resumo:
This paper presents the notion of Context-based Activity Design (CoBAD) that represents context with its dynamic changes and normative activities in an interactive system design. The development of CoBAD requires an appropriate context ontology model and inference mechanisms. The incorporation of norms and information field theory into Context State Transition Model, and the implementation of new conflict resolution strategies based on the specific situation are discussed. A demonstration of CoBAD using a human agent scenario in a smart home is also presented. Finally, a method of treating conflicting norms in multiple information fields is proposed.
Resumo:
This paper investigates the scale and drivers of cross-border real estate development in western and central and eastern Europe (CEE). Drawing upon existing literature on the integration of international real estate markets, we make some inferences on expected patterns of cross-border real estate development from this literature review. The paper draws upon a transactions database in order to assess the penetration of national markets by international real estate developers. The determinants of cross-border transaction flows are modeled as a function the range of economic and real estate variables. Whilst western European markets tend to be dominated by local developers, much higher levels of market penetration by international real estate developers are found in the less mature markets of central and eastern Europe. Empirical modelling based on gravity model specifications reveal the importance of size of the economies, distance between countries, extent of globalization and EU membership as significant determinants of cross-border real estate development flow.
Resumo:
We examine the effects of international and product diversification through mergers and acquisitions (M&As) on the firm's risk–return profile. We identify the rewards from different types of M&As and investigate whether becoming a global firm is a value-enhancing strategy. Drawing on the theoretical work of Vachani (Journal of International Business Studies, 22 (1991), pp. 307−222) and on Rugman and Verbeke's (Journal of International Business Studies, 35 (2004), pp. 3−18) metrics, we classify firms according to their degree of international and product diversification. To account for the endogeneity of M&As, we develop a panel vector autoregression. We find that global and host-region multinational enterprises benefit from cross-border M&As that reinforce their geographical footprint. Cross-industry M&As enhance the risk–return profile of home-region firms. This effect depends on the degree of product diversification. Hence there is no value-enhancing M&A strategy for home-region and bi-regional firms to become ‘truly global’.
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
Government initiatives in several developed and developing countries to roll-out smart meters call for research on the sustainability impacts of these devices. In principle smart meters bring about higher control over energy theft and lower consumption, but require a high level of engagement by end-users. An alternative consists of load controllers, which control the load according to pre-set parameters. To date, research has focused on the impacts of these two alternatives separately. This study compares the sustainability impacts of smart meters and load controllers in an occupied office building in Italy. The assessment is carried out on three different floors of the same building. Findings show that demand reductions associated with a smart meter device are 5.2% higher than demand reductions associated with the load controller.
Resumo:
Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.
Resumo:
Integrating renewable energy into built environments requires additional attention to the balancing of supply and demand due to their intermittent nature. Demand Side Response (DSR) has the potential to make money for organisations as well as support the System Operator as the generation mix changes. There is an opportunity to increase the use of existing technologies in order to manage demand. Company-owned standby generators are a rarely used resource; their maintenance schedule often accounts for a majority of their running hours. DSR encompasses a range of technologies and organisations; Sustainability First (2012) suggest that the System Operator (SO), energy supply companies, Distribution Network Operators (DNOs), Aggregators and Customers all stand to benefit from DSR. It is therefore important to consider impact of DSR measures to each of these stakeholders. This paper assesses the financial implications of organisations using existing standby generation equipment for DSR in order to avoid peak electricity charges. It concludes that under the current GB electricity pricing structure, there are several regions where running diesel generators at peak times is financially beneficial to organisations. Issues such as fuel costs, Carbon Reduction Commitment (CRC) charges, maintenance costs and electricity prices are discussed.
Resumo:
This study investigates the determinants of cross-border capital flows into direct real estate markets. In particular, it investigates how existing institutional, regulatory and real estate specific barriers affect cross-border real estate inflows and outflows in a sample of 24 developed and emerging countries, and whether investors seek out targets with lower barriers and regulatory arbitrage. We do not find evidence of significant cross-border institutional or regulatory arbitrage in the real estate market. However, real estate market liquidity is found to be the most important driver of cross-border flows. While many of the institutional barriers included in this analysis do not appear to impact the level of real estate inflows significantly, their presence tends to suppress real estate capital outflows to other countries. Overall, easy access to financial markets, a good economic environment and transparent real estate markets may enhance real estate outflows, while returns and the macroeconomy are found to enhance domestic real estate investment.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.