917 resultados para simultaneous shape and topology optimisation
Resumo:
Professional cleaning is a basic service occupation with a wide variety of tasks carried out in all kind of different sectors and workplaces by a large workforce. One important risk for cleaning workers is the exposure to chemical substances that are present in cleaning products.Monoethanolamine was found to be often present in cleaning products such as general purpose cleaners, bathroom cleaners, floor cleaners and kitchen cleaners. Monoethanolamine can injure the skin, and exposure to monoethanolamine was associated to asthma even when the air concentrations were low. It is a strong irritant and known to be involved in sensitizing mechanisms. It is very likely that the use of cleaning products containing monoethanolamine gives rise to respiratory and dermal exposures. Therefore there is a need to further investigate the exposures to monoethanolamine for both, respiratory and dermal exposure.The determination of monoethanolamine has traditionally been difficult and analytical methods available are little adapted for occupational exposure assessments. For monoethanolamine air concentrations, a sampling and analytical method was already available and could be used. However, a method to analyses samples for skin exposure assessments as well as samples of skin permeation experiments was missing. Therefore one main objective of this master thesis was to search an already developed and described analytical method for the measurement of monoethanolamine in water solutions, and to set it up in the laboratory. Monoethanolamine was analyzed after a derivatisation reaction with o-pthtaldialdehyde. The derivated fluorescing monoethanolamine was then separated with high performance liquid chromatography and detection took place with a fluorescent detector. The method was found to be suitable for qualitative and quantitative analysis of monoethanolamine. An exposure assessment was conducted in the cleaning sector to measure the respiratory and dermal exposures to monoethanolamine during floor cleaning. Stationary air samples (n=36) were collected in 8 companies and samples for dermal exposures (n=12) were collected in two companies. Air concentrations (Mean = 0.18 mg/m3, Standard Deviation = 0.23 mg/m3, geometric Mean = 0.09 mg/m3, Geometric Standard Deviation = 3.50) detected were mostly below 1/10 of the Swiss 8h time weighted average occupational exposure limit. Factors that influenced the measured monoethanolamine air concentrations were room size, ventilation system and the concentration of monoethanolamine in the cleaning product and amount of monoethanolamine used. Measured skin exposures ranged from 0.6 to 128.4 mg/sample. Some cleaning workers that participated in the skin exposure assessment did not use gloves and had direct contact with the solutions containing the cleaning product and monoethanolamine. During the entire sampling campaign, cleaning workers mostly did not use gloves. Cleaning workers are at risk to be regularly exposed to low air concentrations of monoethanolamine. This exposure may be problematic if a worker suffers from allergic reactions (e.g. Asthma). In that case a substitution of the cleaning product may be a good prevention measure as several different cleaning products are available for similar cleaning tasks. Currently there are no occupational exposure limits to compare the skin exposures that were found. To prevent skin exposures, adaptations of the cleaning techniques and the use of gloves should be considered. The simultaneous skin and airborne exposures might accelerate adverse health effects. Overall the risks caused by exposures to monoethanolamine are considered as low to moderate when the cleaning products are used correctly. Whenever possible, skin exposures should be avoided. Further research should consider especially the dermal exposure routes, as very high exposures might occur by skin contact with cleaning products. Dermatitis but also sensitization might be caused by skin exposures. In addition, new biomedical insights are needed to better understand the risks of the dermal exposure. Therefore skin permeability experiments should be considered.
Resumo:
BACKGROUND: Radiofrequency (RF) ablation is used to obtain local control of unresectable tumors in liver, kidney, prostate, and other organs. Accurate data on expected size and geometry of coagulation zones are essential for physicians to prevent collateral damage and local tumor recurrence. The aim of this study was to develop a standardized terminology to describe the size and geometry of these zones for experimental and clinical RF. METHODS: In a first step, the essential geometric parameters to accurately describe the coagulation zones and the spatial relationship between the coagulation zones and the electrodes were defined. In a second step, standard terms were assigned to each parameter. RESULTS: The proposed terms for single-electrode RF ablation include axial diameter, front margin, coagulation center, maximal and minimal radius, maximal and minimal transverse diameter, ellipticity index, and regularity index. In addition a subjective description of the general shape and regularity is recommended. CONCLUSIONS: Adoption of the proposed standardized description method may help to fill in the many gaps in our current knowledge of the size and geometry of RF coagulation zones.
Resumo:
The Murcott tangor represent 20% of the tangerines trees in São Paulo State being the second more grown. Their fruits have good acceptance in the market cause of the good characteristics presented as: size, attractive internal and external color, transport resistance, high juice rate and industry potential. It is necessary to study the behavior of others varieties, in order to amplify the diversity of tangerine industry, which show suitable characteristics to the fresh fruit market and that make possible different harvest season. Many tangerine varieties, selected from the Citrus Germplasm Bank of the do Centro Avançado de Pesquisa Tecnológica do Agronegócio de Citros "Sylvio Moreira"/IAC, belong to trials carried out in 15 places in São Paulo State. The Capão Bonito area, south-west of the state, is one of this places where the Nova tangelo, the Ortanique and the Murcott tangors are showing quite good results about their fruit qualities. This paper had as an objective to compare the fruit characteristics of the Nova tangelo, the Murcott and the Ortanique tangors grafted on two rootstocks: Rangpur lime and Cleopatra mandarin. Accordingly to the gotten results, is possible to conclude that Nova and Ortanique had shown weight, width, fruit shape and juice percent, similar to the Murcott. In compliance with the harvest season, the Nova present suitable conditions to fresh fruit market in May and June. By the other hand the Murcott fruits can be harvested in July to August and the Ortanique in August to September. For this reason, is possible extend the harvest season of this mandarin-like, from two to five month, occurring inclusive in a period out of the crop at the north hemisphere.
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).
Resumo:
Simulation is a useful tool in cardiac SPECT to assess quantification algorithms. However, simple equation-based models are limited in their ability to simulate realistic heart motion and perfusion. We present a numerical dynamic model of the left ventricle, which allows us to simulate normal and anomalous cardiac cycles, as well as perfusion defects. Bicubic splines were fitted to a number of control points to represent endocardial and epicardial surfaces of the left ventricle. A transformation from each point on the surface to a template of activity was made to represent the myocardial perfusion. Geometry-based and patient-based simulations were performed to illustrate this model. Geometry-based simulations modeled ~1! a normal patient, ~2! a well-perfused patient with abnormal regional function, ~3! an ischaemic patient with abnormal regional function, and ~4! a patient study including tracer kinetics. Patient-based simulation consisted of a left ventricle including a realistic shape and motion obtained from a magnetic resonance study. We conclude that this model has the potential to study the influence of several physical parameters and the left ventricle contraction in myocardial perfusion SPECT and gated-SPECT studies.
Resumo:
The structural organization of microbial mats from the Ebro Delta (Spain) and their accretion and partial lithification processes were explored using scanning electron microscopy in back-scattered electron mode and low-temperature scanning electron microscopy. Two differentiated zones were distinguished in a transverse section of a fragment taken from the mat at a depth of 2.5 mm. The first consisted of an upper layer in which the dominant microorganisms, Microcoleus spp., actively grew in an embedded slack matrix of exopolysaccharides. Microcoleus filaments were oriented parallel to the surface and to each other, with filaments below arranged perpendicularly to one another but without crossing. Most of the minerals present were allochthonous grains of calcium phosphate biocorroded by cyanobacteria. The second zone was below a depth of 1 mm and made up of accretion layers with large deposits of calcium carbonate and smaller amounts of calcium phosphate of biological origin. The predominance of a particular type of mineral precipitation with a characteristic external shape and/or texture within a zone, e.g., sponge-like deposits of calcium phosphate, appears to depend on the taxa of the prevailing microorganisms
Resumo:
The contribution of the propagating and the evanescent waves associated with freely propagating non-paraxial light fields whose transverse component is azimuthally polarized at some plane is investigated. Analytic expressions are derived for describing both the spatial shape and the relative weight of the propagating and the evanescent components integrated over the transverse plane. The analysis is carried out within the framework of the plane-wave angular spectrum approach. These results are used to illustrate the behavior of a kind of donut-like beams with transverse azimuthal polarization at some plane.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.
Resumo:
The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.
Resumo:
BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
Resumo:
Business actions do not take place in isolation. Complementary competencies and capabilities are the most important resources in the exponential knowledge growth. These resources are partially accessed via business partners. A company needs partners and the capability to cooperate, but also the awareness of the competitive tension, when operating in the market with multiple actors. The co-opetition research studies the occurrence and the forms of simultaneous cooperation and competition between companies or their units. Public sector’s governmental and municipal organs have been transformed into companies over the past years. Despite of their non-profit nature, public sector and public companies are adopting business doctrines from private sector towards efficient business operations. This case study aims to show, how co-opetition concept can be observed within public sector companies and in their operations with others, how public companies cooperate but also compete with others and why this happens. This thesis also explicates advantages and disadvantages of the co-opetition phenomenon.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.
Resumo:
The authors present a case of a neuroendocrine carcinoma in an asymptomatic 75-year-old woman, detected in routine breast screening. The lesion was visible at mammography as a well circumscribed, medium density nodule, with no associated microcalcifications, and at ultrasonography as a hypoechoic nodule, with irregular shape and ill-defined margins. Magnetic resonance imaging revealed findings consistent with malignancy.