946 resultados para signal processing algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Impactive contact between a vibrating string and a barrier is a strongly nonlinear phenomenon that presents several challenges in the design of numerical models for simulation and sound synthesis of musical string instruments. These are addressed here by applying Hamiltonian methods to incorporate distributed contact forces into a modal framework for discrete-time simulation of the dynamics of a stiff, damped string. The resulting algorithms have spectral accuracy, are unconditionally stable, and require solving a multivariate nonlinear equation that is guaranteed to have a unique solution. Exemplifying results are presented and discussed in terms of accuracy, convergence, and spurious high-frequency oscillations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With security and surveillance, there is an increasing need to process image data efficiently and effectively either at source or in a large data network. Whilst a Field-Programmable Gate Array (FPGA) has been seen as a key technology for enabling this, the design process has been viewed as problematic in terms of the time and effort needed for implementation and verification. The work here proposes a different approach of using optimized FPGA-based soft-core processors which allows the user to exploit the task and data level parallelism to achieve the quality of dedicated FPGA implementations whilst reducing design time. The paper also reports some preliminary
progress on the design flow to program the structure. An implementation for a Histogram of Gradients algorithm is also reported which shows that a performance of 328 fps can be achieved with this design approach, whilst avoiding the long design time, verification and debugging steps associated with conventional FPGA implementations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals -- The algorithm to define the dynamic threshold is a modification of a convex combination found in literature -- This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise -- The present work shows preliminary results over a database built with some political speech -- The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared -- Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on digital equalization of nonlinear fiber impairments for coherent optical transmission systems. Building from well-known physical models of signal propagation in single-mode optical fibers, novel nonlinear equalization techniques are proposed, numerically assessed and experimentally demonstrated. The structure of the proposed algorithms is strongly driven by the optimization of the performance versus complexity tradeoff, envisioning the near-future practical application in commercial real-time transceivers. The work is initially focused on the mitigation of intra-channel nonlinear impairments relying on the concept of digital backpropagation (DBP) associated with Volterra-based filtering. After a comprehensive analysis of the third-order Volterra kernel, a set of critical simplifications are identified, culminating in the development of reduced complexity nonlinear equalization algorithms formulated both in time and frequency domains. The implementation complexity of the proposed techniques is analytically described in terms of computational effort and processing latency, by determining the number of real multiplications per processed sample and the number of serial multiplications, respectively. The equalization performance is numerically and experimentally assessed through bit error rate (BER) measurements. Finally, the problem of inter-channel nonlinear compensation is addressed within the context of 400 Gb/s (400G) superchannels for long-haul and ultra-long-haul transmission. Different superchannel configurations and nonlinear equalization strategies are experimentally assessed, demonstrating that inter-subcarrier nonlinear equalization can provide an enhanced signal reach while requiring only marginal added complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A utilização generalizada do computador para a automatização das mais diversas tarefas, tem conduzido ao desenvolvimento de aplicações que possibilitam a realização de actividades que até então poderiam não só ser demoradas, como estar sujeitas a erros inerentes à actividade humana. A investigação desenvolvida no âmbito desta tese, tem como objectivo o desenvolvimento de um software e algoritmos que permitam a avaliação e classificação de queijos produzidos na região de Évora, através do processamento de imagens digitais. No decurso desta investigação, foram desenvolvidos algoritmos e metodologias que permitem a identificação dos olhos e dimensões do queijo, a presença de textura na parte exterior do queijo, assim como características relativas à cor do mesmo, permitindo que com base nestes parâmetros possa ser efectuada uma classificação e avaliação do queijo. A aplicação de software, resultou num produto de simples utilização. As fotografias devem respeitar algumas regras simples, sobre as quais se efectuará o processamento e classificação do queijo. ABSTRACT: The widespread use of computers for the automation of repetitive tasks, has resulted in developing applications that allow a range of activities, that until now could not only be time consuming and also subject to errors inherent to human activity, to be performed without or with little human intervention. The research carried out within this thesis, aims to develop a software application and algorithms that enable the assessment and classification of cheeses produced in the region of Évora, by digital images processing. Throughout this research, algorithms and methodologies have been developed that allow the identification of the cheese eyes, the dimensions of the cheese, the presence of texture on the outside of cheese, as well as an analysis of the color, so that, based on these parameters, a classification and evaluation of the cheese can be conducted. The developed software application, is product simple to use, requiring no special computer knowledge. Requires only the acquisition of the photographs following a simple set of rules, based on which it will do the processing and classification of cheese.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radars are expected to become the main sensors in various civilian applications, especially for autonomous driving. Their success is mainly due to the availability of low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. This thesis focuses on the study and the development of different deterministic and learning based techniques for colocated multiple-input multiple-output (MIMO) radars. In particular, after providing an overview on the architecture of these devices, the problem of detecting and estimating multiple targets in stepped frequency continuous wave (SFCW) MIMO radar systems is investigated and different deterministic techniques solving it are illustrated. Moreover, novel solutions, based on an approximate maximum likelihood approach, are developed. The accuracy achieved by all the considered algorithms is assessed on the basis of the raw data acquired from low power wideband radar devices. The results demonstrate that the developed algorithms achieve reasonable accuracies, but at the price of different computational efforts. Another important technical problem investigated in this thesis concerns the exploitation of machine learning and deep learning techniques in the field of colocated MIMO radars. In this thesis, after providing a comprehensive overview of the machine learning and deep learning techniques currently being considered for use in MIMO radar systems, their performance in two different applications is assessed on the basis of synthetically generated and experimental datasets acquired through a commercial frequency modulated continuous wave (FMCW) MIMO radar. Finally, the application of colocated MIMO radars to autonomous driving in smart agriculture is illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, Ph.D candidate presents a compact sensor node (SN) designed for long-term and real-time acoustic emission (AE) monitoring of above ground storage tanks (ASTs). Each SN exploits up to three inexpensive low-frequency sensors based on piezoelectric diaphragms for effective leakage detection, and it is capable by means of built-in Digital Signal Processing functionalities to process the acquired time waveforms extracting the AE features usually required by testing protocols. Alternatively, capability to plug three high frequency AE sensors to a SN for corrosion simulated phenomena detection is envisaged and demonstrated. Another innovative aspect that the Ph.D candidate presents in this work is an alternative mathematical model of corrosion location on the bottom of the AST. This approach implies considering the three-dimensional localization model versus the two-dimensional commonly used according to the literature. This approach is aimed at significant optimization in the number of sensors in relation to the standard approach for solving localization problems as well as to allow filtering the false AE events related to the condensate droplets from AST ceiling. The technological implementation of this concept required the solution of a number of technical problems, such as the precise time of arrival (ToA) signal estimation, vertical localization of the AE source and multilaration solution that were discussed in detail in this work. To validate the developed prototype, several experimental campaigns were organized that included the simulation of target phenomena both in laboratory conditions and on a real water storage tank. The presented test results demonstrate the successful application of the developed AE system both for simulated leaks and for corrosion processes on the tank bottom. Mathematical and technological algorithms for localization and characterization of AE signals implemented during the development of the prototype are also confirmed by the test results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider distributions u is an element of S'(R) of the form u(t) = Sigma(n is an element of N) a(n)e(i lambda nt), where (a(n))(n is an element of N) subset of C and Lambda = (lambda n)(n is an element of N) subset of R have the following properties: (a(n))(n is an element of N) is an element of s', that is, there is a q is an element of N such that (n(-q) a(n))(n is an element of N) is an element of l(1); for the real sequence., there are n(0) is an element of N, C > 0, and alpha > 0 such that n >= n(0) double right arrow vertical bar lambda(n)vertical bar >= Cn(alpha). Let I(epsilon) subset of R be an interval of length epsilon. We prove that for given Lambda, (1) if Lambda = O(n(alpha)) with alpha < 1, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (2) if Lambda = O(n) is uniformly discrete, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (3) if alpha > 1 and. is uniformly discrete, then for all epsilon > 0, u vertical bar I(epsilon) = 0 double right arrow u = 0. Since distributions of the above mentioned form are very common in engineering, as in the case of the modeling of ocean waves, signal processing, and vibrations of beams, plates, and shells, those uniqueness and nonuniqueness results have important consequences for identification problems in the applied sciences. We show an identification method and close this article with a simple example to show that the recovery of geometrical imperfections in a cylindrical shell is possible from a measurement of its dynamics.