992 resultados para shape memory alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work combines electron backscattering diffraction and Schmid analysis to investigate secondary twinning in the magnesium alloy Mg–3Al–1Zn. Inspection of the misorientations between the parent and {1011} - {1012} doubly twinned volumes reveals that there are four possible variants. One of these variants (the one that forms a misorientation with the matrix characterized by 38°⟨1210⟩ ) is favoured much more than the others. This variant involves the activation of secondary twinning systems quite inconsistent with Schmid-type behaviour. For the secondary twin to grow significantly it must take on a shape enforced by the primary twin. This is non-optimal for strain compatibility. It is argued that the 38°⟨1210⟩ variant occurs most because it provides the closest match between the primary and secondary twinning planes, thus minimizing the compatibility strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and some of its alloys are well accepted as load-bearing implant materials due to their excellent mechanical properties, superior corrosion resistance, and outstanding biocompatibility. However, solid implant materials may suffer from the problems of adverse tissue reaction, biomechanical mismatch and lack of new bone tissue ingrowth ability. In the present study, porous titanium-molybdenum (Ti-Mo) alloy was fabricated by the space-holding sintering method. The pore size, pore shape and porosity can be controlled through choosing appropriate space-holding particle materials. Electron scanning microscopy (SEM) was used for the characterisation of the porous Ti-Mo alloy. The mechanical properties of the porous Ti-Mo alloy samples were investigated by compressive tests. Results indicated that the porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability and mechanical properties mimicking those of natural bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work combines electron backscatter diffraction, transmission electron microscopy and Schmid analysis to investigate secondary twinning in the magnesium alloy Mg-3AI-1Zn. Inspection of the misorientations between the parent matrix and {1011} - {1012} doubly twinned volumes reveals that there are four possible variants. One of these variants characterized by 38°< 1210 > misorientation with the matrix is favoured much more than the others. This variant involves activation of the secondary twinning systems that are quite inconsistent with the Schmid-type behaviour. For the secondary twin to grow significantly it must take on a shape enforced by the primary twin, however, this is not optimal for strain compatibility. It is argued that the 38° < 1210 > variant occurs most frequently because it provides the closest match between the primary and secondaty twinning planes, thus minimizing the compatibility strain. This conjecture is confirmed by the simulations of twin activity m ellipsoidal grains performed using the visco-plastic self-consistent crystal plasticity model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The firebombing of Dresden marks the terrible apex of the European bombing war. In just over two days in February 1945, over 1,300 heavy bombers from the RAF and the USAAF dropped nearly 4,000 tonnes of explosives on Dresden's civilian centre.Since the end of World War II, both the death toll and the motivation for the attack have become fierce historical battlegrounds, as German feelings of victimhood complete with those of guilt and loss. The Dresden bombing was used by East Germany as a propaganda tool, and has been re-appropriated by the neo-Nazi far right. Meanwhile the rebuilding of the Frauenkirche- the city's sumptuous eighteenth-century church destroyed in the raid-became central to German identity, while in London, a statue of the Commander-in-Chief of RAF Bomber Command, Sir Arthur Harris, has attracted protests. In this book, Tony Joel focuses on the historical battle to re-appropriate Dresden, and on how World War II continues to shape British and German identity today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are of great demand in the aerospace and biomedical industries. Most the titanium products are either cast or sintered to required shape and finish machined to get the appropriate surface texture to meet the design requirements. Ti-6Al-4V is often referred as work horse among the titanium alloys due to its heavy use in the aerospace industry. This paper is an attempt to investigate and improve the machining performance of Ti-6Al-4V. Thin wall machining is an advance machining technique especially used in machining turbine blades which can be done both in a conventional way and using a special technique known as trochoidal milling. The experimental design consists of conducting trials using combination of cutting parameters such as cutting speed (vc), 90 and 120 m/min; feed/tooth (fz) of 0.25 and 0.35 mm/min; step over (ae) 0.3 and 0.2; at constant depth of cut (ap) 20mm and using coolant. A preliminary assessment of machinability of Ti-6Al-4V during thin wall machining using trochoidal milling is done. A correlation established using cutting force, surface texture and dimensional accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, recorded in electronic medical records, are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors in space, models patient health state trajectories through explicit memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle irregular timed events by moderating the forgetting and consolidation of memory cells. DeepCare also incorporates medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden -- diabetes and mental health -- the results show improved modeling and risk prediction accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a pulsed Nd:YAG laser was used to join Hastelloy C-276 thin foil with 100 microns thickness. Pulse energy was varied from 1.0 to 2.25 J at small increments of 0.25 J with a 4 ms pulse duration. The macro and microstructures of the welds were analyzed by optical and electronic microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the dilution rate, it is possible to weld Hastelloy C-276 thin foil by pulsed Nd: YAG laser. (C) 2012 Published by Elsevier B. V. Selection and/or review under responsibility of Bayerisches Laserzentrum GmbH

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For those of us who shared many years of friendship and professional collaboration with Pedro Vuskovic, the news of his recent death in Mexico has been the cause of great sorrow, not only because of the circumstances of his death, following a cruel disease that gradually sapped his physical -but not intellectual- strength, but also because it signifies the loss of a great Latin American, of a teacher who helped shape so many generations of young people in our region, and of a companion during so many days of intellectual strivings and political struggle. Pedro joined the Commission in 1950, shortly after its birth as an institution. For nearly 20 years he served it brilliantly in a professional capacity, with his career in ECLAC culminating in the position of Director of the Development Division. He played a crucial role in structuring and disseminating the thinking of ECLAC during a time when the very air teemed with the ideas and concerns of a pleiad of gifted economists and social scientists. These were the post-war years, the 1950s and 1960s, when we all had to "construct" Latin America. Pedro Vuskovic laid many of the bricks in that collective theoretical and political edifice which has been of such importance to the countries of the region. Concurrently, he served as a professor in ECLAC and ILPES training programmes while at the same time teaching classes at the schools of economics and sociology at the University of Chile and the School of Economics at the University of Concepción. When he left ECLAC, Pedro plunged wholeheartedly into the academic world, serving as the Director of the Institute of Economics of the University of Chile, and then went on to claim a position at the forefront of Chilean politics. In November 1970 he was named Minister of Economic Affairs by President Salvador Allende and in June 1972, took over the cabinet-level position of Executive Vice President of the Production Development Corporation (CORFO);, where he served until September 1973. When political events carried him into exile in Mexico, which generously welcomed him as it did so many other Latin Americans who faced similar problems, Pedro carried on his valuable academic work, first at the Economic Research and Teaching Centre (CIDE);, where he directed the Institute of Economic Studies of Latin America, and later at the Centre for Interdisciplinary Research in the Humanities at the National University of Mexico (UNAM);, where he was named to the position of Coordinator for a programme on poverty and development options in various countries of Latin America. Although he will be remembered for his important political role, Pedro's work as a scholar and as an economist deserve special mention. He was a brilliant speaker, at the same time both methodical and incisive, who mastered his subjects with great wisdom and intellectual breadth, and he derived a special joy from being with young people, from providing them with intellectual stimulation and receiving it from them in turn. The many generations of Latin American students who were fortunate enough to have him as a teacher can attest to this. Pedro Vuskovic brought to his work as a researcher and teacher a deep sense of political and social responsibility which moved him to espouse the cause of Latin America 's poor and dispossessed, whose position he had come to understand very early on in his life through the many studies he carried out in this area while at ECLAC. He was tenacious in upholding his ideas and principles, he lived in accordance with them, and he championed them in all the forums open to him, in both the political and academic worlds, to the end of his days. His friends and colleagues also remember his geniality, his sense of humour and great personal warmth -traits which were coupled with an unshakable loyalty to his principles and values. Our farewell is deeply felt; Pedro Vuskovic has left us a legacy of memories and lessons that we will always hold close to our hearts. On behalf of his friends and colleagues, Jacobo Schatan, former Director of the Joint ECLAC/FAO, Agriculture Division