774 resultados para sensor array
Resumo:
The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
The Mechatronics Research Centre (MRC) owns a small scale robot manipulator called aMini-Mover 5. This robot arm is a microprocessor-controlled, six-jointed mechanical armdesigned to provide an unusual combination of dexterity and low cost.The Mini-Mover-5 is operated by a number of stepper motors and is controlled by a PCparallel port via a discrete logic board. The manipulator also has an impoverished array ofsensors.This project requires that a new control board and suitable software be designed to allow themanipulator to be controlled from a PC. The control board will also provide a mechanism forthe values measured using some sensors to be returned to the PC.On this project I will consider: stepper motor control requirements, sensor technologies,power requirements, USB protocols, USB hardware and software development and controlrequirements (e.g. sample rates).In this report we will have a look at robots history and background, as well as we willconcentrate how stepper motors and parallel port work
Resumo:
En aquest projecte es pretén implementar un dispositiu capaç de ser auto-suficient i no dependre de cap tipus de pila, bateria o fil elèctric que l’abasteixi d’energia elèctrica. El dispositiu recol·lectarà la energia magnètica generada per la corrent elèctrica a un fil i la transformarà en energia elèctrica, que serà emmagatzemada per el seu posterior ús. A demès, aquest projecte s’ha desenvolupat en col·laboració amb un segon projecte, dintre del qual s’implementarà una xarxa de sensors, mitjançant el protocol MIWI. Aquest projecte es divideix en tres grans blocs. El primer bloc del projecte serà una introducció teòrica de tots els coneixements relacionats amb el concepte d’energy harvesting i els mecanismes físic implicats. Al segon bloc podrem veure com s’han realitzat els càlculs, simulacions i posada en marxa, dels diferents elements que formaran el dispositiu recol·lector d’energia. Per últim en el tercer bloc veurem el prototip ja implementat. Es valoraran els resultats obtinguts, i es veuran els temps que necessitarà per alimentar al microcontrolador.
Resumo:
Abstract Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.
Resumo:
The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
Recently, we showed that connexin37 (Cx37) protects against early atherosclerotic lesion development by regulating monocyte adhesion. The expression of this gap junction protein is altered in mouse and human atherosclerotic lesions; it is increased in macrophages newly recruited to the lesions and disappears from the endothelium of advanced plaques. To obtain more insight into the molecular role of Cx37 in advanced atherosclerosis, we used micro-array analysis for gene expression profiling in aortas of ApoE(-/-) and Cx37(-/-)ApoE(-/-) mice before and after 18 weeks of cholesterol-rich diet. Out of >15,000 genes, 106 genes were significantly differentially expressed in young mice before diet (P-value of <0.05, fold change of >0.7 or <-0.7, and intensity value >2.2 times background). Ingenuity pathway analysis (IPA) revealed differences in genes involved in cell-to-cell signaling and interaction, cellular compromise and nutritional disease. In addition, we identified 100 genes that were significantly perturbed after the cholesterol-rich diet. Similar to the analysis on 10-week-old mice, IPA revealed differences in genes involved in cell-to-cell signaling and interaction as well as to immuno-inflammatory disease. Furthermore, we found important changes in genes involved in vascular calcification and matrix degradation, some of which were confirmed at protein level by (immuno-)histochemistry. In conclusion, we suggest that Cx37 deficiency alters the global differential gene expression profiles in young mice towards a pro-inflammatory phenotype, which are then further influenced in advanced atherosclerosis. The results provide new insights into the significance of Cx37 in plaque calcification.
Resumo:
Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Resumo:
Dynamic mixtures of Rh-dye complexes can be used to determine the history of chemical events such as the addition of ATP and ADP by UV-vis spectroscopy.
Resumo:
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.