859 resultados para selective modification
Resumo:
Evolution through natural selection suggests unnecessary genes are lost. We observed that the yeast Candida glabrata lost the gene encoding a phosphate-repressible acid phosphatase (PHO5) present in many yeasts including Saccharomyces cerevisiae. However, C. glabrata still had phosphate starvation-inducible phosphatase activity. Screening a C. glabrata genomic library, we identified CgPMU2, a member of a three-gene family that contains a phosphomutase-like domain. This small-scale gene duplication event could allow for sub- or neofunctionalization. On the basis of phylogenetic and biochemical characterizations, CgPMU2 has neofunctionalized to become a broad range, phosphate starvation-regulated acid phosphatase, which functionally replaces PHO5 in this pathogenic yeast. We determined that CgPmu2, unlike ScPho5, is not able to hydrolyze phytic acid (inositol hexakisphosphate). Phytic acid is present in fruits and seeds where S. cerevisiae grows, but is not abundant in mammalian tissues where C. glabrata grows. We demonstrated that C. glabrata is limited from an environment where phytic acid is the only source of phosphate. Our work suggests that during evolutionary time, the selection for the ancestral PHO5 was lost and that C. glabrata neofunctionalized a weak phosphatase to replace PHO5. Convergent evolution of a phosphate starvation-inducible acid phosphatase in C. glabrata relative to most yeast species provides an example of how small changes in signal transduction pathways can mediate genetic isolation and uncovers a potential speciation gene.
Resumo:
In recent years, several vasopressin antagonists have been developed that block V-1 receptors either selectively or nonselectively.(1,2) To date, one combined V-1/V-2 antagonist (primarily a V-2 antagonist, as determined on the basis of human receptor binding data), conivaptan, has been approved for the treatment of euvolemic hyponatremia.(3,4) We have previously shown that the vascular properties of a vasopressin V-1 antagonist can be investigated safely and reliably in healthy subjects. We used the measurement of skin blood flow after intradermic injection of exogenous arginine vasopressin on a skin area prevasodilated with calcitonin gene-related peptide (CGRP).(3,5) This technique enables the documentation of the dose-dependent effects of vasopressin or vasopressin antagonists. In this study, we have characterized the V-1a pharmacodynamic profile of increasing doses of RWJ-676070, a new orally active dual V-1a/V-2 receptor antagonist, in healthy subjects.(5)
Resumo:
A T(2) magnetization-preparation (T(2) Prep) sequence is proposed that is insensitive to B(1) field variations and simultaneously provides fat suppression without any further increase in specific absorption rate (SAR). Increased B(1) inhomogeneity at higher magnetic field strength (B(0) > or = 3T) necessitates a preparation sequence that is less sensitive to B(1) variations. For the proposed technique, T(2) weighting in the image is achieved using a segmented B(1)-insensitive rotation (BIR-4) adiabatic pulse by inserting two equally long delays, one after the initial reverse adiabatic half passage (AHP), and the other before the final AHP segment of a BIR-4 pulse. This sequence yields T(2) weighting with both B(1) and B(0) insensitivity. To simultaneously suppress fat signal (at the cost of B(0) insensitivity), the second delay is prolonged so that fat accumulates additional phase due to its chemical shift. Numerical simulations as well as phantom and in vivo image acquisitions were performed to show the efficacy of the proposed technique.
Resumo:
BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.
Resumo:
Abstract : Gene duplication is an essential source of material for the origin of genetic novelties. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with at least ~3600 detectable retrocopies. We find that ~30% of these retrocopies are transcribed, generally in testes. Their transcription often relies on preexisting regulatory elements (or open chromatin) close to their insertion site, which is illustrated by mRNA molecules containing retrocopies fused to their neighboring genes. Retrocopies appear to have been profoundly shaped by selection. Consistently, human retrocopies with an intact open reading (ORF) are more often transcribed than retropseudogenes, which leads to a minimal estimate of 120 functional retrogenes present in our genome. We also performed an analysis of Ka/Ks for human retrocopies. This analysis demonstrates that several intact retrocopies evolved under purifying selection and yields an estimated formation rate of ~1 retrogene per million year in the primate lineage. Using DNA sequencing and evolutionary simulations, we have identified 7 such primate-specific retrogenes that emerged on the lineage leading to humans In therian genomes, we found an excess of retrogenes with X-linked parents. Expression analyses support the idea that this "out of X" movement was driven by natural selection to produce autosomal functional counterparts for X-linked genes, which are silenced during male meiosis. Phylogenetic dating of this "out of X" movement suggests that our sex chromosomes arose about 180 MYA ago and are thus much younger than previously thought. Finally, we have also analyzed young gene duplications (and deletions) that arose by non allelic-homologous recombination and are not fixed in species. Using wild-caught and laboratory animals, we detected thousands of DNA segments that are polymorphic in copy number in mice. These copy number variants were found to profoundly alter the transcriptome of several mouse tissues. Strikingly, their influence on gene expression is not limited to the gene they contain but seems to extend to genes located up to 1.5 million bases away.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
Objectives of this investigation were to measure the effects of moderate heat treatments (below the dehydroxylation temperature) on physical and chemical properties of a calcium-montmorillonite clay. Previous workers have noted the reduction in cation exchange capacity and swelling property after heating in the range 200 to 400°C, and have suggested several possible explanations, such as hysteresis effect, increased inter-layer attractions due to removal of inter-layer water, or changes in the disposition of inter-layer or layer surface ions. The liquid limits of Ca-montmorillonite were steadily decreased with increased temperature of treatment, levelling at about 450°C. The plastic limit decreased slightly up to 350°C, above which samples could no longer be rolled into threads. The gradual change is in contrast with sudden major changes noted for weight loss (maximum rates of change at l00°C and 500°C), glycol retention surface area (520°C), and d001 diffraction peak intensity (17.7 A spacing) and breadth after glycolation (530°C). Other properties showing more gradual reductions with heat treatment were amount of exchangeable calcium (without water soaking), cation exchange capacity by NH4AC method, and d001 intensity (21 A spacing) after storing at 100% r.h. one month and re-wetting with water. Previous water soaking allowed much greater release of fixed Ca++ up to 450°C. Similar results were obtained with cation exchange capacities when samples were treated with N CaCl2 solution. The 21.0 A peak intensity curve showed close similarity to the liquid limit and plastic index curves in the low temperature range, and an explanation is suggested.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
The susceptibility of blood changes after administration of a paramagnetic contrast agent that shortens T(1). Concomitantly, the resonance frequency of the blood vessels shifts in a geometry-dependent way. This frequency change may be exploited for incremental contrast generation by applying a frequency-selective saturation prepulse prior to the imaging sequence. The dual origin of vascular enhancement depending first on off-resonance and second on T(1) lowering was investigated in vitro, together with the geometry dependence of the signal at 3T. First results obtained in an in vivo rabbit model are presented.
Resumo:
Abstract In humans, the skin is the largest organ of the body, covering up to 2m2 and weighing up to 4kg in an average adult. Its function is to preserve the body from external insults and also to retain water inside. This barrier function termed epidermal permeability barrier (EPB) is localized in the functional part of the skin: the epidermis. For this, evolution has built a complex structure of cells and lipids sealing the surface, the stratum corneum. The formation of this structure is finely tuned since it is not only formed once at birth, but renewed all life long. This active process gives a high plasticity and reactivity to skin, but also leads to various pathologies. ENaC is a sodium channel extensively studied in organs like kidney and lung due to its importance in regulating sodium homeostasis and fluid volume. It is composed of three subunits α, ß and r which are forming sodium selective channel through the cell membrane. Its presence in the skin has been demonstrated, but little is known about its physiological role. Previous work has shown that αENaC knockout mice displayed an abnormal epidermis, suggesting a role in differentiation processes that might be implicated in the EPB. The principal aim of this thesis has been to study the consequences for EPB function in mice deficient for αENaC by molecular and physiological means and to investigate the underlying molecular mechanisms. Here, the barrier function of αENaC knockout pups is impaired. Apparently not immediately after birth (permeability test) but 24h later, when evident water loss differences appeared compared to wildtypes. Neither the structural proteins of the epithelium nor the tights junctions showed any obvious alterations. In contrary, stratum corneum lipid disorders are most likely responsible for the barrier defect, accompanied by an impairment of skin surface acidification. To analyze in details this EPB defect, several hypotheses have been proposed: reduced sensibility to calcium which is the key activator far epidermal formation, or modification of ENaC-mediated ion fluxes/currents inside the epidermis. The cellular localization of ENaC and the action in the skin of CAPl, a positive regulator of ENaC, have been also studied in details. In summary, this study clearly demonstrates that ENaC is a key player in the EPB maintenance, because αENaC knockout pups are not able to adapt to the new environment (ex utero) as efficiently as the wildtypes, most likely due to impaired of sodium handling inside the epidermis. Résumé Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses pathologies. ENaC est un canal sodique très étudié dans le rein et le poumon pour son importance dans la régulation de l'homéostasie sodique et la régulation du volume du milieu intérieur. Il est composé de 3 sous unités, α, ß et y qui forment un pore sélectif pour le sodium dans les membranes. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris dont le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la différentiation et pourrait même être impliqué dans la barrière épithéliale. Le but de cette thèse fut l'étude de la barrière dans ces souris knockouts avec des méthodes moléculaires et physiologiques et la caractérisation des mécanismes moléculaire impliqués. Dans ce travail, il a été montré que les souris mutantes présentaient un défaut de la barrière. Ce défaut n'est pas visible immédiatement à la naissance (test de perméabilité), mais 24h plus tard, lorsque les tests de perte d'eau transépithéliale montrent une différence évidente avec les animaux contrôles. Ni les protéines de structures ni les jonctions serrées de l'épiderme ne présentaient d'imperfections majeures. A l'inverse, les lipides de la couche cornée présentaient un problème de maturation (expliquant le phénotype de la barrière), certainement consécutif au défaut d'acidification à la surface de la peau que nous avons observé. D'autres mécanismes ont été explorées afin d'investiguer cette anomalie de la barrière, comme la réduction de sensibilité au calcium qui est le principal activateur de la formation de l'épiderme, ou la modification des flux d'ions entre les couches de l'épiderme. La localisation cellulaire d'ENaC, et l'action de son activateur CAPl ont également été étudiés en détails. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des knockouts ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme. Résumé tout public Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses maladies. ENaC est une protéine formant un canal qui permet le passage sélectif de l'ion sodium à travers la paroi des cellules. Il est très étudié dans le rein pour son importance dans la récupération du sel lors de la concentration de l'urine. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris où le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la peau et plus particulièrement la fonction de barrière de l'épiderme. Le but de cette thèse fut l'étude de la fonction de barrière dans ces souris mutantes, au niveau tissulaire et cellulaire. Dans ce travail, il a été montré que les souris mutantes présentaient une peau plus perméable que celle des animaux contrôles, grâce à une machine mesurant la perte d'eau à travers la peau. Ce défaut n'est visible que 24h après la naissance, mais nous avons pu montrer que les animaux mutants perdaient quasiment 2 fois plus d'eau que les contrôles. Au niveau moléculaire, nous avons pu montrer que ce défaut provenait d'un problème de maturation des lipides qui composent la barrière de la peau. Cette maturation est incomplète vraisemblablement à cause d'un défaut de mouvement des ions dans les couches les plus superficielles de l'épiderme, et cela à cause de l'absence du canal ENaC. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des mutants ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme.
Resumo:
Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand.