963 resultados para seed production
Resumo:
Precision Agriculture (PA) and the more specific branch of Precision Horticulture are two very promising sectors. They focus on the use of technologies in agriculture to optimize the use of inputs, so to reach a better efficiency, and minimize waste of resources. This important objective motivated many researchers and companies to search new technology solutions. Sometimes the effort proved to be a good seed, but sometimes an unfeasible idea. So that PA, from its birth more or less 25 years ago, is still a “new” management, interesting for the future, but an actual low adoption rate is still reported by experts and researchers. This work aims to give a contribution in finding the causes of this low adoption rate and proposing a methodological solution to this problem. The first step was to examine prior research about Precision Agriculture adoption, by ex ante and ex post approach. It was supposed as important to find connections between these two phases of a purchase experience. In fact, the ex ante studies dealt with potential consumer’s perceptions before a usage experience occurred, therefore before purchasing a technology, while the ex post studies described the drivers which made a farmer become an end-user of PA technology. Then, an example of consumer research is presented. This was an ex ante research focused on pre-prototype technology for fruit production. This kind of research could give precious information about consumer acceptance before reaching an advanced development phase of the technology, and so to have the possibility to change something with the least financial impact. The final step was to develop the pre-prototype technology that was the subject of the consumer acceptance research and test its technical characteristics.
Resumo:
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity-ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m(-2) and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m(-2). One year after seed addition, local plant species richness had increased on average by six species m(-2) (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m(-2) (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump-shaped model appears to be the limiting outline of the natural diversity-productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176–1211 gm−2. In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm2 in each of six plots representing an area of c. 150 m2. The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176-1211 gm(-2). In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm(2) in each of six plots representing an area of c. 150 m(2). The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.
Resumo:
1. Successful seed dispersal by animals is assumed to occur when undamaged seeds arrive at a favourable microsite. Most seed removal and dispersal studies consider only two possible seed fates, predation or escape intact. Whether partial consumption of seeds has ecological implications for natural regeneration is unclear. We studied partial consumption of seeds in a rodent-dispersed oak species. 2. Fifteen percent of dispersed acorns were found partially eaten in a field experiment. Most damage affected only the basal portion of the seeds, resulting in no embryo damage. Partially eaten acorns had no differences in dispersal distance compared to intact acorns but were recovered at farther distances than completely consumed acorns. 3. Partially eaten acorns were found under shrub cover unlike intact acorns that were mostly dispersed to open microhabitats. 4. Partially eaten acorns were not found buried proportionally more often than intact acorns, leading to desiccation and exposure to biotic agents (predators, bacteria and fungi). However, partial consumption caused more rapid germination, which enables the acorns to tolerate the negative effects of exposure. 5. Re-caching and shrub cover as microhabitat of destination promote partial seed consumption. Larger acorns escaped predation more often and had higher uneaten cotyledon mass. Satiation at seed level is the most plausible explanation for partial consumption. 6. Partial consumption caused no differences in root biomass when acorns experienced only small cotyledon loss. However, root biomass was lower when acorns experienced heavy loss of tissue but, surprisingly, they produced longer roots, which allow the seeds to gain access sooner to deeper resources. 7.Synthesis. Partial consumption of acorns is an important event in the oak regeneration process, both quantitatively and qualitatively. Most acorns were damaged non-lethally, without decreasing both dispersal distances and the probability of successful establishment. Faster germination and production of longer roots allow partially eaten seeds to tolerate better the exposure disadvantages caused by the removal of the pericarp and the non-buried deposition. Consequently, partially consumed seeds can contribute significantly to natural regeneration and must be considered in future seed dispersal studies.
Resumo:
The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.
Resumo:
Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces.
Resumo:
Leucopogon melaleucoides, a flowering shrub, is desired by floricultural markets but is difficult to propagate. Seed viability was tested and dormancy mechanisms were studied to develop a commercial propagation system. Although around 56% of seed were viable, germination was completely inhibited unless the endocarp was removed. After-ripened seed (8 months after collection) germinated faster than fresh seed (2 days after collection), but germination occurred over a prolonged period (155 days). Germination of after-ripened seed was promoted with GA(3) or a commercial smoke product containing unknown plant growth regulators. All viable seed treated with GA(3) at 1000 mg L-1 had germinated after 24 days. The results suggest that both a physical and physiological dormancy mechanism occur for this species, with removal of the endocarp and pretreatment with 1000 mg L-1 GA(3) promoting complete germination of viable seed.
Resumo:
The influence of different light regimes on the germination of Australian and English populations of Phalaris paradoxa L. (awned canary-grass) seed was investigated to determine the impact of changing tillage practices on weed infestation. Seeds of all biotypes were highly viable, but differed in levels of innate dormancy (26-99%). In one experiment seed from a single Australian biotype, either enclosed in the spikelet glumes or having the spikelet glumes removed, were exposed to nine light treatments. Germination was stimulated by red and white light, but was inhibited by far-red light. Time to 50%, germination was less for seed enclosed in the spikelet glumes than for naked caryopses, although the final percentage of seed germinating when still enclosed in the spikelet glumes was significantly lower than for naked caryopses. In another experiment, six Australian and English biotypes with varying dormancy characteristics were exposed to eight light treatments. Red light did not stimulate germination in the deeply dormant biotype, however stimulated all other biotypes. Germination in darkness was below 20% in all biotypes except for one where germination was 51%. To overcome dormancy seeds were imbibed and placed in darkness at 16degreesC for either 7 or 14 days prior to exposure to red or white light for a single 15-min period. Dormancy in all biotypes was overcome indicating that a period of burial may decrease the dormancy level and increase seed sensitivity to light. This increased light sensitivity suggests that exposure to light during tillage may stimulate germination in P. paradoxa seed.
Resumo:
Full analysis of eight seed samples collected in the 1960's excavations at Neolithic Catalhoyuk East, Turkey, is presented. Detailed investigation of the composition and context of the samples suggests that the Neolithic population collected, processed and stored seeds from Capsella sp. and Descurainia sp. (wild crucifers) for food use. In addition seeds of Vicia/Lathyrus sp. (wild vetch), Helianthemum spp. and Taeniatherum caput-medusae mixed with Eremopyrum type (grasses) were also found, some of which may have been used for food or other purposes. The analysis demonstrates that wild seed exploitation was a regular part of subsistence practice alongside the economic staple of crop production, and again demonstrates how diverse plant use practices were at the site.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
A two-tier study is presented in this thesis. The first involves the commissioning of an extant but at the time, unproven bubbling fluidised bed fast pyrolysis unit. The unit was designed for an intended nominal throughput of 300 g/h of biomass. The unit came complete with solids separation, pyrolysis vapour quenching and oil collection systems. Modifications were carried out on various sections of the system including the reactor heating, quenching and liquid collection systems. The modifications allowed for fast pyrolysis experiments to be carried out at the appropriate temperatures. Bio-oil was generated using conventional biomass feedstocks including Willow, beechwood, Pine and Miscanthus. Results from this phase of the research showed however, that although the rig was capable of processing biomass to bio-oil, it was characterised by low mass balance closures and recurrent operational problems. The problems included blockages, poor reactor hydrodynamics and reduced organic liquid yields. The less than optimal performance of individual sections, particularly the feed and reactor systems of the rig, culminated in a poor overall performance of the system. The second phase of this research involved the redesign of two key components of the unit. An alternative feeding system was commissioned for the unit. The feed system included an off the shelf gravimetric system for accurate metering and efficient delivery of biomass. Similarly, a new bubbling fluidised bed reactor with an intended nominal throughput of 500g/h of biomass was designed and constructed. The design leveraged on experience from the initial commissioning phase with proven kinetic and hydrodynamic studies. These units were commissioned as part of the optimisation phase of the study. Also as part of this study, two varieties each, of previously unreported feedstocks namely Jatropha curcas and Moringa olifiera oil seed press cakes were characterised to determine their suitability as feedstocks for liquid fuel production via fast pyrolysis. Consequently, the feedstocks were used for the production of pyrolysis liquids. The quality of the pyrolysis liquids from the feedstocks were then investigated via a number of analytical techniques. The oils from the press cakes showed high levels of stability and reduced pH values. The improvements to the design of the fast pyrolysis unit led to higher mass balance closures and increased organic liquid yields. The maximum liquid yield obtained from the press cakes was from African Jatropha press cake at 66 wt% on a dry basis.