931 resultados para scene change detection
Resumo:
In recent years, there has been a growing interest in incorporating microgrids in electrical power networks. This is due to various advantages they present, particularly the possibility of working in either autonomous mode or grid connected, which makes them highly versatile structures for incorporating intermittent generation and energy storage. However, they pose safety issues in being able to support a local island in case of utility disconnection. Thus, in the event of an unintentional island situation, they should be able to detect the loss of mains and disconnect for self-protection and safety reasons. Most of the anti-islanding schemes are implemented within control of single generation devices, such as dc-ac inverters used with solar electric systems being incompatible with the concept of microgrids due to the variety and multiplicity of sources within the microgrid. In this paper, a passive islanding detection method based on the change of the 5th harmonic voltage magnitude at the point of common coupling between grid-connected and islanded modes of operation is presented. Hardware test results from the application of this approach to a laboratory scale microgrid are shown. The experimental results demonstrate the validity of the proposed method, in meeting the requirements of IEEE 1547 standards.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Synthetic Aperture Radar’s (SAR) are systems designed in the early 50’s that are capable of obtaining images of the ground using electromagnetic signals. Thus, its activity is not interrupted by adverse meteorological conditions or during the night, as it occurs in optical systems. The name of the system comes from the creation of a synthetic aperture, larger than the real one, by moving the platform that carries the radar (typically a plane or a satellite). It provides the same resolution as a static radar equipped with a larger antenna. As it moves, the radar keeps emitting pulses every 1/PRF seconds —the PRF is the pulse repetition frequency—, whose echoes are stored and processed to obtain the image of the ground. To carry out this process, the algorithm needs to make the assumption that the targets in the illuminated scene are not moving. If that is the case, the algorithm is able to extract a focused image from the signal. However, if the targets are moving, they get unfocused and/or shifted from their position in the final image. There are applications in which it is especially useful to have information about moving targets (military, rescue tasks,studyoftheflowsofwater,surveillanceofmaritimeroutes...).Thisfeatureiscalled Ground Moving Target Indicator (GMTI). That is why the study and the development of techniques capable of detecting these targets and placing them correctly in the scene is convenient. In this document, some of the principal GMTI algorithms used in SAR systems are detailed. A simulator has been created to test the features of each implemented algorithm on a general situation with moving targets. Finally Monte Carlo tests have been performed, allowing us to extract conclusions and statistics of each algorithm.
Resumo:
Los efectos del cambio global sobre los bosques son una de las grandes preocupaciones de la sociedad del siglo XXI. Algunas de sus posibles consecuencias como son los efectos en la producción, la sostenibilidad, la pérdida de biodiversidad o cambios en la distribución y ensamblaje de especies forestales pueden tener grandes repercusiones sociales, ecológicas y económicas. La detección y seguimiento de estos efectos constituyen uno de los retos a los que se enfrentan en la actualidad científicos y gestores forestales. En base a la comparación de series históricas del Inventario Forestal Nacional Español (IFN), esta tesis trata de arrojar luz sobre algunos de los impactos que los cambios socioeconómicos y ambientales de las últimas décadas han generado sobre nuestros bosques. En primer lugar, esta tesis presenta una innovadora metodología con base geoestadística que permite la comparación de diferentes ciclos de inventario sin importar los diferentes métodos de muestreo empleados en cada uno de ellos (Capítulo 3). Esta metodología permite analizar cambios en la dinámica y distribución espacial de especies forestales en diferentes gradientes geográficos. Mediante su aplicación, se constatarán y cuantificarán algunas de las primeras evidencias de cambio en la distribución altitudinal y latitudinal de diferentes especies forestales ibéricas, que junto al estudio de su dinámica poblacional y tasas demográficas, ayudarán a testar algunas hipótesis biogeográficas en un escenario de cambio global en zonas de especial vulnerabilidad (Capítulos 3, 4 y 5). Por último, mediante la comparación de ciclos de parcelas permanentes del IFN se ahondará en el conocimiento de la evolución en las últimas décadas de especies invasoras en los ecosistemas forestales del cuadrante noroccidental ibérico, uno de los más afectados por la invasión de esta flora (Capítulo 6). ABSTRACT The effects of global change on forests are one of the major concerns of the XXI century. Some of the potential impacts of global change on forest growth, productivity, biodiversity or changes in species assembly and spatial distribution may have great ecological and economic consequences. The detection and monitoring of these effects are some of the major challenges that scientists and forest managers face nowadays. Based on the comparison of historical series of the Spanish National Forest Inventory (NFI), this thesis tries to shed some light on some of the impacts driven by recent socio-economic and environmental changes on our forest ecosystems. Firstly, this thesis presents an innovative methodology based on geostatistical techniques that allows the comparison of different NFI cycles regardless of the different sampling methods used in each of them (Chapter 3). This methodology, in conjunction with other statistical techniques, allows to analyze changes in the spatial distribution and population dynamics of forest species along different geographic gradients. By its application, this thesis presents some of the first evidences of changes in species distribution along different geographical gradients in the Iberian Peninsula. The analysis of these findings, of species population dynamics and demographic rates will help to test some biogeographical hypothesis on forests under climate change scenarios in areas of particular vulnerability (Chapters 3, 4 and 5). Finally, by comparing NFI cycles with permanent plots, this thesis increases our knowledge about the patterns and processes associated with the recent evolution of invasive species in the forest ecosystems of North-western Iberia, one of the areas most affected by the invasion of allien species at national scale (Chapter 6).
Resumo:
A sensitive, labor-saving, and easily automatable nonradioactive procedure named APEX-FCS (amplified probe extension detected by fluorescence correlation spectroscopy) has been established to detect specific in vitro amplification of pathogen genomic sequences. As an example, Mycobacterium tuberculosis genomic DNA was subjected to PCR amplification with the Stoffel fragment of Thermus aquaticus DNA polymerase in the presence of nanomolar concentrations of a rhodamine-labeled probe (third primer), binding to the target in between the micromolar amplification primers. The probe becomes extended only when specific amplification occurs. Its low concentration avoids false-positives due to unspecific hybridization under PCR conditions. With increasing portion of extended probe molecules, the probe’s average translational diffusion properties gradually change over the course of the reaction, reflecting amplification kinetics. Following PCR, this change from a stage of high to a stage of low mobility can directly be monitored during a 30-s measurement using a fluorescence correlation spectroscopy device. Quantitation down to 10 target molecules in a background of 2.5 μg unspecific DNA without post-PCR probe manipulations could be achieved with different primer/probe combinations. The assay holds the promise to concurrently perform amplification, probe hybridization, and specific detection without opening the reaction chamber, if sealable foils are used.
Resumo:
The perceived colors of reflecting surfaces generally remain stable despite changes in the spectrum of the illuminating light. This color constancy can be measured operationally by asking observers to distinguish illuminant changes on a scene from changes in the reflecting properties of the surfaces comprising it. It is shown here that during fast illuminant changes, simultaneous changes in spectral reflectance of one or more surfaces in an array of other surfaces can be readily detected almost independent of the numbers of surfaces, suggesting a preattentive, spatially parallel process. This process, which is perfect over a spatial window delimited by the anatomical fovea, may form an early input to a multistage analysis of surface color, providing the visual system with information about a rapidly changing world in advance of the generation of a more elaborate and stable perceptual representation.
Resumo:
This letter presents signal processing techniques to detect a passive thermal threshold detector based on a chipless time-domain ultrawideband (UWB) radio frequency identification (RFID) tag. The tag is composed by a UWB antenna connected to a transmission line, in turn loaded with a biomorphic thermal switch. The working principle consists of detecting the impedance change of the thermal switch. This change occurs when the temperature exceeds a threshold. A UWB radar is used as the reader. The difference between the actual time sample and a reference signal obtained from the averaging of previous samples is used to determine the switch transition and to mitigate the interferences derived from clutter reflections. A gain compensation function is applied to equalize the attenuation due to propagation loss. An improved method based on the continuous wavelet transform with Morlet wavelet is used to overcome detection problems associated to a low signal-to-noise ratio at the receiver. The average delay profile is used to detect the tag delay. Experimental measurements up to 5 m are obtained.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"19 May 1983."
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
Background: This paper describes SeqDoC, a simple, web-based tool to carry out direct comparison of ABI sequence chromatograms. This allows the rapid identification of single nucleotide polymorphisms (SNPs) and point mutations without the need to install or learn more complicated analysis software. Results: SeqDoC produces a subtracted trace showing differences between a reference and test chromatogram, and is optimised to emphasise those characteristic of single base changes. It automatically aligns sequences, and produces straightforward graphical output. The use of direct comparison of the sequence chromatograms means that artefacts introduced by automatic base-calling software are avoided. Homozygous and heterozygous substitutions and insertion/deletion events are all readily identified. SeqDoC successfully highlights nucleotide changes missed by the Staden package 'tracediff' program. Conclusion: SeqDoC is ideal for small-scale SNP identification, for identification of changes in random mutagenesis screens, and for verification of PCR amplification fidelity. Differences are highlighted, not interpreted, allowing the investigator to make the ultimate decision on the nature of the change.
Resumo:
Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.
Resumo:
Objective: This paper compares four techniques used to assess change in neuropsychological test scores before and after coronary artery bypass graft surgery (CABG), and includes a rationale for the classification of a patient as overall impaired. Methods: A total of 55 patients were tested before and after surgery on the MicroCog neuropsychological test battery. A matched control group underwent the same testing regime to generate test–retest reliabilities and practice effects. Two techniques designed to assess statistical change were used: the Reliable Change Index (RCI), modified for practice, and the Standardised Regression-based (SRB) technique. These were compared against two fixed cutoff techniques (standard deviation and 20% change methods). Results: The incidence of decline across test scores varied markedly depending on which technique was used to describe change. The SRB method identified more patients as declined on most measures. In comparison, the two fixed cutoff techniques displayed relatively reduced sensitivity in the detection of change. Conclusions: Overall change in an individual can be described provided the investigators choose a rational cutoff based on likely spread of scores due to chance. A cutoff value of ≥20% of test scores used provided acceptable probability based on the number of tests commonly encountered. Investigators must also choose a test battery that minimises shared variance among test scores.
Resumo:
The recent emergence of a decreased susceptibility of Neisseria gonorrhoeae strains to penicillin in New Caledonia has lead clinicians to operate a change in the treatment strategy. In addition, this important health issue has emphasized the need for a rapid means of detecting penicillin resistance in N. gonorrhoeae in order to select an effective treatment and limit the spread of resistant strains. In recent years, the use of fluorescence resonance energy transfer on the LightCycler has proven to be a valuable tool for the screening of mutations occurring in the genome of various microorganisms. In this study, we developed a real-time PCR assay coupled with a fluorometric hybridization probes system to detect a penicillin resistance-associated mutation on the N. gonorrhoeae ponA gene. Following an extensive evaluation involving 136 isolates, melting curve analysis correctly evidenced a 5 degrees C T-m shift in all N. gonorrhoeae strains possessing this mutation, as determined by conventional sequencing analysis. Moreover, the mutation profiles obtained with the real-time PCR showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Overall, our molecular assay allowed an accurate and reproducible determination of the susceptibility to penicillin corresponding to a mutation present in all chromosomally mediated resistant strains of N. gonorrhoeae.