976 resultados para scanning tunnel microscopy
Resumo:
Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.
Resumo:
The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.
Resumo:
The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t
Resumo:
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
Resumo:
Gross anatomy of muscle and sensory/motor innervation of adult and intramolluscan developmental stages of Echinostoma caproni have been investigated to ascertain the organisation and the functional correlates of any stage-specific patterns of staining. Using indirect immunocytochemistry to demonstrate neuroactive substances and the phalloidin-fluorescence technique for staining myofibril F-actin, the muscle systems and aminergic and peptidergic innervation of daughter rediae, cercariae, metacercariae, and pre- and post-ovigerous adults were examined and compared using confocal scanning laser microscopy. A complex arrangement of specific muscle fibre systems occurs within the body wall (composed of circular, longitudinal and diagonal fibres), suckers (radial, equatorial, meridional), pharynx (radial, circular), gut caeca (mainly circular), cercarial tail (circular, pseudo-striated longitudinal), and ducts of the reproductive system (circular, longitudinal), presumed to serve locomotor, adhesive, alimentary and reproductive functions. Immunostaining for serotonin (5-HT) and FMRFamide-related peptides (FaRPs) was evident throughout the central (CNS) and peripheral (PNS) nervous systems of all stages, and use of dual-labelling techniques demonstrated separate neuronal pathways for 5-HT and FaRP in both CNS and PNS. FaRP expression in the innervation of the ootype wall was demonstrated only in post-ovigerous worms and not in pre-ovigerous worms, suggesting an involvement of FaRP neuropeptides in the process of egg assembly. Comparison of the present findings with those recorded for other digeneans suggests that muscle organisation and innervation patterns in trematodes are highly conserved.
Resumo:
Neuropeptides, biogenic amines and acetylcholine are expressed abundantly within the nervous systems of parasitic flatworms, and are particularly evident in the innervation of the musculature. Such associations have implicated the nervous system in locomotion, host attachment and reproductive co-ordination. Information on the muscle systems of parasitic flatworms is generally sparse, in particular those muscles associated with the reproductive system, intestinal tract and attachment apparatus. Also, the use of sectioned material has left description of the 3-dimensional organization of the musculature largely unrecorded. Using fluorescein isothiocyanate (FITC)-labelled phalloidin as a site-specific probe for filamentous actin, applied to whole-mount preparations of adult Fasciola hepatica and examined by confocal scanning laser microscopy, the present work reports on the organization of the major muscle systems in this trematode parasite. A highly regular array of outer circular, intermediate longitudinal and inner diagonal fibres distinguishes the body wall musculature, which is also involved in the development of both ventral and oral suckers. Circular fibres dominate the duct walls of the male and female reproductive systems, whereas the muscles of the intestinal tract have a somewhat diffuse arrangement of fibres. An understanding of the structural complexity of the muscle systems of parasitic flatworms is considered as fundamental to the interpretation of results from physiological experiments.
Resumo:
Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.
Resumo:
The presence of mobile ions complicates the implementation of voltage-modulated scanning probe microscopy techniques such as Kelvin probe force microscopy (KPFM). Overcoming this technical hurdle, however, provides a unique opportunity to probe ion dynamics and electrochemical processes in liquid environments and the possibility to unravel the underlying mechanisms behind important processes at the solid–liquid interface, including adsorption, electron transfer and electrocatalysis. Here we describe the development and implementation of electrochemical force microscopy (EcFM) to probe local bias- and time-resolved ion dynamics and electrochemical processes at the solid–liquid interface. Using EcFM, we demonstrate contact potential difference measurements, consistent with the principles of open-loop KPFM operation. We also demonstrate that EcFM can be used to investigate charge screening mechanisms and electrochemical reactions in the probe–sample junction. We further establish EcFM as a force-based imaging mode, allowing visualization of the spatial variability of sample-dependent local electrochemical properties.
Resumo:
La stratégie de la tectonique moléculaire a montré durant ces dernières années son utilité dans la construction de nouveaux matériaux. Elle repose sur l’auto-assemblage spontané de molécule dite intelligente appelée tecton. Ces molécules possèdent l’habilité de se reconnaitre entre elles en utilisant diverses interactions intermoléculaires. L'assemblage résultant peut donner lieu à des matériaux moléculaires avec une organisation prévisible. Cette stratégie exige la création de nouveaux tectons, qui sont parfois difficiles à synthétiser et nécessitent dans la plupart des cas de nombreuses étapes de synthèse, ce qui empêche ou limite leur mise en application pratique. De plus, une fois formées, les liaisons unissant le corps central du tecton avec ces groupements de reconnaissance moléculaire ne peuvent plus être rompues, ce qui ne permet pas de remodeler le tecton par une procédure synthétique simple. Afin de contourner ces obstacles, nous proposons d’utiliser une stratégie hybride qui se sert de la coordination métallique pour construire le corps central du tecton, combinée avec l'utilisation des interactions plus faibles pour contrôler l'association. Nous appelons une telle entité métallotecton du fait de la présence du métal. Pour explorer cette stratégie, nous avons construit une série de ligands ditopiques comportant soit une pyridine, une bipyridine ou une phénantroline pour favoriser la coordination métallique, substitués avec des groupements diaminotriazinyles (DAT) pour permettre aux complexes de s'associer par la formation de ponts hydrogène. En plus de la possibilité de créer des métallotectons par coordination, ces ligands ditopiques ont un intérêt intrinsèque en chimie supramoléculaire en tant qu'entités pouvant s'associer en 3D et en 2D. En parallèle à notre étude de la chimie de coordination, nous avons ii examiné l'association des ligands, ainsi que celle des analogues, par la diffraction des rayons-X (XRD) et par la microscopie de balayage à effet tunnel (STM). L'adsorption de ces molécules sur la surface de graphite à l’interface liquide-solide donne lieu à la formation de différents réseaux 2D par un phénomène de nanopatterning. Pour comprendre les détails de l'adsorption moléculaire, nous avons systématiquement comparé l’organisation observée en 2D par STM avec celle favorisée dans les structures 3D déterminées par XRD. Nous avons également simulé l'adsorption par des calculs théoriques. Cette approche intégrée est indispensable pour bien caractériser l’organisation moléculaire en 2D et pour bien comprendre l'origine des préférences observées. Ces études des ligands eux-mêmes pourront donc servir de référence lorsque nous étudierons l'association des métallotectons dérivés des ligands par coordination. Notre travail a démontré que la stratégie combinant la chimie de coordination et la reconnaissance moléculaire est une méthode de construction rapide et efficace pour créer des réseaux supramoléculaires. Nous avons vérifié que la stratégie de la tectonique moléculaire est également efficace pour diriger l'organisation en 3D et en 2D, qui montre souvent une homologie importante. Nous avons trouvé que nos ligands hétérocycliques ont une aptitude inattendue à s’adsorber fortement sur la surface de graphite, créant ainsi des réseaux organisés à l'échelle du nanomètre. L’ensemble de ces résultats promet d’offrir des applications dans plusieurs domaines, dont la catalyse hétérogène et la nanotechnologie. Mots clés : tectonique moléculaire, interactions intermoléculaires, stratégie hybride, coordination métallique, diffraction des rayons-X, microscopie de balayage à effet tunnel, graphite, phénomène de nanopatterning, calculs théoriques, ponts hydrogène, chimie supramoléculaire, ligands hétérocycliques, groupements DAT, catalyse hétérogène, nanotechnologie.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Étude de l’association supramoléculaire bi- et tridimensionnelle d’oximes et d’hydrazones trigonales
Resumo:
Les concepts de la chimie supramoléculaire peuvent être exploités avantageusement pour contrôler la structure et les propriétés des matériaux moléculaires. Dans une approche productive, les composantes moléculaires du matériau peuvent être choisies pour pouvoir s'engager dans des interactions fortes et prévisibles avec leurs voisins. Cette stratégie, appelée la tectonique moléculaire, est caractérisée par la préparation de molécules particulières appelées tectons (du grec tectos, qui signifie constructeur) qui, par design rationnel, s’associent de manière prévisible via de multiples interactions non-covalentes afin de générer l’architecture désirée. Ce processus est réversible et guidé par la présence de fonctions chimiques complémentaires, appelées groupements de reconnaissance, qui sont orientées de manière à conférer un aspect directionnel aux interactions intermoléculaires. Ceci permet de positionner les molécules voisines de façon prédéterminée. Les contraintes imposées par les interactions s’opposent souvent à la tendance naturelle des molécules à former une structure compacte et permettent donc à d'autres molécules invitées d’occuper un volume appréciable dans le matériau, sans toutefois contribuer directement à l'architecture principale. Appliquée à la cristallisation, cette approche peut générer des cristaux poreux, analogues aux zéolites. Les ponts hydrogène offrent une interaction non-covalente de choix dans cette stratégie car ils sont forts et directionnels. L’exploration d’une multitude de fonctions chimiques connues pour pouvoir participer à la formation de ponts hydrogène a permis de créer une grande diversité de nouveaux matériaux lors de l’évolution du domaine du génie cristallin. Une molécule classique, qui illustre bien la stratégie tectonique et qui a eu un fort impact dans le domaine de la chimie supramoléculaire, est l’acide 1,3,5-benzènetricarboxylique, communément appelé acide trimésique. L’acide trimésique donne une orientation trigonale à trois groupements carboxyles, favorisant ainsi la formation d'un réseau hexagonal retenu par ponts hydrogène. Nous avons visé une modification dans laquelle les groupements -COOH de l'acide trimésique sont remplacés par deux autres groupements de reconnaissance, jusqu’ici peu exploités en chimie supramoléculaire, l’oxime et l’hydrazone. Nous rapportons la synthèse et la cristallisation de différentes trioximes et trihydrazones analogues à l'acide trimésique. Les cristaux obtenus ont été analysés par diffraction des rayons-X et leurs structures ont été déterminées. L’auto-assemblage de différentes trioximes et trihydrazones en 2D par adsorption sur graphite a également été étudié en utilisant la microscopie à balayage à effet tunnel. Nos résultats nous permettent de comparer l'organisation en 2D et en 3D de différents analogues de l'acide trimésique.
Resumo:
Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire s’occupe de la conception et la synthèse de molécules organiques appelées tectons, du grec tectos qui signifie constructeur. Le tecton est souvent constitué de sites de reconnaissance branchés sur un squelette bien choisi. Les sites de reconnaissance orientés par la géométrie du squelette peuvent participer dans des interactions intermoléculaires qui sont suffisamment fortes et directionnelles pour guider la topologie du cristal résultant. La stratégie envisagée utilise des processus d'auto-assemblage engageant des interactions réversibles entre les tectons. L’auto-assemblage dirigé par de fortes interactions intermoléculaires directionnelles est largement utilisé pour fabriquer des matériaux dont les composants doivent être positionnés en trois dimensions (3D) d'une manière prévisible. Cette stratégie peut également être utilisée pour contrôler l’association moléculaire en deux dimensions (2D), ce qui permet la construction de monocouches organisées et prédéterminées sur différents types des surfaces, tels que le graphite.Notre travail a mis l’accent sur le comportement de la fonction amide comme fonction de reconnaissance qui est un analogue du groupement carboxyle déjà utilisé dans plusieurs études précédentes. Nous avons étudié le comportement d’une série de composés contenant un noyau plat conçu pour faciliter l'adsorption sur le graphite et modifiés par l'ajout de groupes amide pour favoriser la formation de liaisons hydrogène entre les molécules ainsi adsorbées. La capacité de ces composés à former de monocouches organisées à l’échelle moléculaire en 2D a été examinée par microscopie à effet tunnel, etleur organisation en 3D a également été étudiée par cristallographie aux rayons X. Dans notre étude, nous avons systématiquement modifié la géométrie moléculaire et d'autres paramètres afin d'examiner leurs effets sur l'organisation moléculaire. Nos résultats suggèrent que les analyses structurales combinées en 2D et 3D constituent un important atout dans l'effort pour comprendre les interactions entre les molécules adsorbées et l’effet de l’interaction avec la surface du substrat.