944 resultados para rhoptry-associated protein 2
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
Synaptosomal-associated protein of 25 kDa (SNAP-25) is thought to play a key role in vesicle exocytosis and in the control of transmitter release. However, the precise mechanisms of action as well as the regulation of SNAP-25 remain unclear. Here we show by immunoprecipitation that activation of protein kinase C (PKC) by phorbol esters results in an increase in SNAP-25 phosphorylation. In addition, immunochemical analysis of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels shows that SNAP-25 focuses as three or four distinct spots in the expected range of molecular weight and isoelectric point. Changing the phosphorylation level of the protein by incubating the slices in the presence of either a PKC agonist (phorbol 12,13-dibutyrate) or antagonist (chelerythrine) modified the distribution of SNAP-25 among these spots. Phorbol 12,13-dibutyrate increased the intensity of the spots with higher molecular weight and lower isoelectric point, whereas chelerythrine produced the opposite effect. This effect was specific for regulators of PKC, as agonists of other kinases did not produce similar changes. Induction of long-term potentiation, a property involved in learning mechanisms, and production of seizures with a GABA(A) receptor antagonist also increased the intensity of the spots with higher molecular weight and lower isoelectric point. This effect was prevented by the PKC inhibitor chelerythrine. We conclude that SNAP-25 can be phosphorylated in situ by PKC in an activity-dependent manner.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.
Resumo:
Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.
Resumo:
Introduction : Doublecortin (DCX) is a microtubule associated protein expressed by migrating neural precursors. DCX is also expressed in approximately 4% of all cortical cells in adult normal primate brain. DCX expression is also enhanced locally in response to an acute insult made to the brain. This is thought to play a role in plasticity or neural repair. That being said, it would be interesting to know how the expression of DCX is modified in a more chronic insult, like in neurodegeneration such as in Parkinson's Disease (PD) and Alzheimer's Disease (AD). The aim of my study is to study the expression of DCX cells in the cortex of patients having a neurodegenerative disease, compared to control patients. Method: DCX cells quantification on 9 DCX208;stained 5 μm thick formalin fixed paraffin embedded brain sections: 3 Alzheimer's disease patients, 3 Parkinson's disease patients and 3 control patients. Each patient had several sections that we could stain with different stainings (GALLYA, TAU, DCX). By using a computerized image analysis system (Explora Nova, La Rochelle, France), cortical columns were selected on areas on the cortex with a lot of degeneration subjectively observed on GALLYA stained sections and on TAU stained sections. Then total number of cells was counted on TAU sections, where all nuclei were colored in blue. Then the DCX cells were counted on the corresponding DCX sections. These values were standardized to a reference surface area. The ratio of DCX cells over total cells was then calculated. Results : There is a difference of DCX cell expression between Alzheimer's Disease patients and control patients. The percentage of dcx cells in the cortex of an Alzheimer's patient is around 12.54% ± 2.17%, where as in the cortex of control patients, it is around 5.47% ± 0.83%. On the other hand, there is no significant difference in the ratio of DCX cells over total cells between parkinson's patients and control patients, both having around 5% of DCX cells. Discussion: There is a dramatic increase of DCX expression in AD (12.5%) compared to PD and controls (5.5%). The increase in DCX ratio in AD may have two potential causes: 1.The increased ratio is due to DCX cells being more resistant to degeneration compared to surrounding cells which are degenerating due to AD, leading to the cortical atrophy observed in AD patients. So the decrease of total cells without any change in the number of DCX cells makes the ratio bigger in AD compared to the controls. 2.The increased ratio is due to an actual increase in DCX cells. This means that there is some neural repair to compensate the degenerative process, just like the repair process observed in acute lesions to the brain. This second idea can be integrated in the broader point of view of neuroinflammation. The progression of the disease would trigger neuroinflammation and the process following the primary inflammatory response which is neural repair. So our study can show that the increase in DCX cells is an attempt to repair the degenerated neurons, in the context of neuroinflammation triggered by the physiopathological progression of the disease.
Resumo:
The cellular FLICE inhibitory protein (c-FLIP) is an endogenous inhibitor of the caspase-8 proapoptotic signaling pathway downstream of death receptors. Recent evidence indicates that the long form of c-FLIP (c-FLIP(L)) is required for proliferation and effector T-cell development. However, the role of c-FLIP(L) in triggering autoimmunity has not been carefully analyzed. We now report that c-FLIP(L) transgenic (Tg) mice develop splenomegaly, lymphadenopathy, multiorgan infiltration, high titers of auto-antibodies, and proliferative glomerulonephritis with immune complex deposition in a strain-dependent manner. The development of autoimmunity requires CD4(+) T cells and may result from impaired thymic selection. At the molecular level, c-FLIP(L) overexpression inhibits the zeta chain-associated protein tyrosine kinase of 70 kDa (ZAP-70) activation, thus impairing the signaling pathway derived from ZAP-70 required for thymic selection. Therefore, we have identified c-FLIP(L) as a susceptibility factor under the influence of epistatic modifiers for the development of autoimmunity.
Resumo:
SCG10 is a neuron-specific, membrane-associated protein that is highly concentrated in growth cones of developing neurons. Previous studies have suggested that it is a regulator of microtubule dynamics and that it may influence microtubule polymerization in growth cones. Here, we demonstrate that in vivo, SCG10 exists in both phosphorylated and unphosphorylated forms. By two-dimensional gel electrophoresis, two phosphoisoforms were detected in neonatal rat brain. Using in vitro phosphorylated recombinant protein, four phosphorylation sites were identified in the SCG10 sequence. Ser-50 and Ser-97 were the target sites for protein kinase A, Ser-62 and Ser-73 for mitogen-activated protein kinase and Ser-73 for cyclin-dependent kinase. We also show that overexpression of SCG10 induces a disruption of the microtubule network in COS-7 cells. By expressing different phosphorylation site mutants, we have dissected the roles of the individual phosphorylation sites in regulating its microtubule-destabilizing activity. We show that nonphosphorylatable mutants have increased activity, whereas mutants in which phosphorylation is mimicked by serine-to-aspartate substitutions have decreased activity. These data suggest that the microtubule-destabilizing activity of SCG10 is regulated by phosphorylation, and that SCG10 may link signal transduction of growth or guidance cues involving serine/threonine protein kinases to alterations of microtubule dynamics in the growth cone.
Resumo:
The macrophage is the niche of the intracellular pathogen Mycobacterium tuberculosis. Induction of macrophage apoptosis by CD4(+) or CD8(+) T cells is accompanied by reduced bacterial counts, potentially defining a host defense mechanism. We have already established that M. tuberculosis-infected primary human macrophages have a reduced susceptibility to Fas ligand (FasL)-induced apoptosis. To study the mechanisms by which M. tuberculosis prevents apoptotic signaling, we have generated a cell culture system based on PMA- and IFN-gamma-differentiated THP-1 cells recapitulating the properties of primary macrophages. In these cells, nucleotide-binding oligomerization domain 2 or TLR2 agonists and mycobacterial infection protected macrophages from apoptosis and resulted in NF-kappaB nuclear translocation associated with up-regulation of the antiapoptotic cellular FLIP. Transduction of a receptor-interacting protein-2 dominant-negative construct showed that nucleotide-binding oligomerization domain 2 is not involved in protection in the mycobacterial infection system. In contrast, both a dominant-negative construct of the MyD88 adaptor and an NF-kappaB inhibitor abrogated the protection against FasL-mediated apoptosis, showing the implication of TLR2-mediated activation of NF-kappaB in apoptosis protection in infected macrophages. The apoptosis resistance of infected macrophages might be considered as an immune escape mechanism, whereby M. tuberculosis subverts innate immunity signaling to protect its host cell against FasL(+)-specific cytotoxic lymphocytes.
Resumo:
BACKGROUND: Activation of Fas (CD95) by its ligand (FasL) rapidly induces cell death through recruitment and activation of caspase-8 via the adaptor protein Fas-associated death domain protein (FADD). However, Fas signals do not always result in apoptosis but can also trigger a pathway that leads to proliferation. We investigated the level at which the two conflicting Fas signals diverge and the protein(s) that are implicated in switching the response. RESULTS: Under conditions in which proliferation of CD3-activated human T lymphocytes is increased by recombinant FasL, there was activation of the transcription factors NF-kappaB and AP-1 and recruitment of the caspase-8 inhibitor and FADD-interacting protein FLIP (FLICE-like inhibitory protein). Fas-recruited FLIP interacts with TNF-receptor associated factors 1 and 2, as well as with the kinases RIP and Raf-1, resulting in the activation of the NF-kappaB and extracellular signal regulated kinase (Erk) signaling pathways. In T cells these two signal pathways are critical for interleukin-2 production. Increased expression of FLIP in T cells resulted in increased production of interleukin-2. CONCLUSIONS: We provide evidence that FLIP is not simply an inhibitor of death-receptor-induced apoptosis but that it also mediates the activation of NF-kappaB and Erk by virtue of its capacity to recruit adaptor proteins involved in these signaling pathways.
Resumo:
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.
Resumo:
Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1β on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1β profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1β on the expression of Homer1a in neurons.
Resumo:
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.