890 resultados para real option analysis
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
This paper presents a solution to the problem of estimating the monotonous tendency of a slow-varying oscillating system. A recursive Prony Analysis (PA) scheme is developed which involves obtaining a dynamic model with parameters identified by implementing the forgetting factor recursive least square (FFRLS) method. A box threshold principle is proposed to separate the dominant components, which results in an accurate estimation of the trend of oscillating systems. Performance of the proposed PA is evaluated using real-time measurements when random noise and vibration effects are present. Moreover, the proposed method is used to estimate monotonous tendency of deck displacement to assist in a safe landing of an unmanned aerial vehicle (UAV). It is shown that the proposed method can estimate instantaneous mean deck satisfactorily, making it well suited for integration into ship-UAV approach and landing guidance systems.
Resumo:
Real estate markets in Chinese cities are in transition. Advertising for new developments in these markets often reflects changing city aspirations and branding rather than environmental and social experience. This paper investigates real estate marketing as a site of potential ethical transformation of values related to new urban development. It uses Kenneth Burke’s rhetorical analysis as an approach to coding real estate representations from in-flight magazine advertisements as a means of capturing environmental and social viewpoints in China during 2008 - 2009. Both Chinese and foreign participants coded representations into four code modalities. These were based on anthropocentric - non-anthropocentric environmental orientations and nationalistic - universal social orientations. The results suggested that new developments in China are more likely to be understood as based on environmental resource use for continued national economic expansion rather than for a more sustainable world. Emerging patterns in coded representations have opened up the possibility of greater social choices that were however difficult to unambiguously decode from Chinese real estate advertising. From this it is concluded that it may take some time before real estate demand shifts in response to representations of Chinese eco-cities being promoted by Chinese policy makers in the 2000s.
Resumo:
The purpose of this paper is to determine and discuss on the plant and machinery valuation syllabus for higher learning education in Malaysia to ensure the practicality of the subject in the real market. There have been limited studies in plant and machinery area, either by scholars or practitioners. Most papers highlighted the methodologies but limited papers discussed on the plant and machinery valuation education. This paper will determine inputs for plant and machinery valuation guidance focussing on the syllabus set up and references for valuers interested in this area of expertise. A qualitative approach via content analysis is conducted to compare international and Malaysian plant and machinery valuation syllabus and suggest improvements for Malaysian syllabus. It is found that there are few higher education institutions in the world that provide plant and machinery valuation courses as part of their property studies syllabus. Further investigation revealed that on the job training is the preferable method for plant and machinery valuation education and based on the valuers experience. The significance of this paper is to increase the level of understanding of plant and machinery valuation criteria and provide suggestions to Malaysian stakeholders with the relevant elements in plant and machinery valuation education syllabus.
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
Developers and policy makers are consistently at odds over the debate as to whether impact fees increase house prices. This debate continues despite the extensive body of theoretical and empirical international literature that discusses the passing on to home buyers of impact fees, and the corresponding increase to housing prices. In attempting to quantify this impact, over a dozen empirical studies have been carried out in the US and Canada since the 1980’s. However the methodologies used vary greatly, as do the results. Despite similar infrastructure funding policies in numerous developed countries, no such empirical works exist outside of the US/Canada. The purpose of this research is to analyse the existing econometric models in order to identify, compare and contrast the theoretical bases, methodologies, key assumptions and findings of each. This research will assist in identifying if further model development is required and/or whether any of these models have external validity and are readily transferable outside of the US. The findings conclude that there is very little explicit rationale behind the various model selections and that significant model deficiencies appear still to exist.
Resumo:
The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. The resulting 165 heuristics for designing and evaluating real-time strategy games are presented and discussed in this paper.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].
Resumo:
This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.
Resumo:
The mechanisms of force generation and transference via microfilament networks are crucial to the understandings of mechanobiology of cellular processes in living cells. However, there exists an enormous challenge for all-atom physics simulation of real size microfilament networks due to scale limitation of molecular simulation techniques. Following biophysical investigations of constitutive relations between adjacent globular actin monomers on filamentous actin, a hierarchical multiscale model was developed to investigate the biomechanical properties of microfilament networks. This model was validated by previous experimental studies of axial tension and transverse vibration of single F-actin. The biomechanics of microfilament networks can be investigated at the scale of real eukaryotic cell size (10 μm). This multiscale approach provides a powerful modeling tool which can contribute to the understandings of actin-related cellular processes in living cells.
Resumo:
This paper is devoted to the analysis of career paths and employability. The state-of-the-art on this topic is rather poor in methodologies. Some authors propose distances well adapted to the data, but are limiting their analysis to hierarchical clustering. Other authors apply sophisticated methods, but only after paying the price of transforming the categorical data into continuous, via a factorial analysis. The latter approach has an important drawback since it makes a linear assumption on the data. We propose a new methodology, inspired from biology and adapted to career paths, combining optimal matching and self-organizing maps. A complete study on real-life data will illustrate our proposal.
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.