865 resultados para protease-activated receptor-2
Resumo:
Oxidized low-density lipoprotein (oxLDL) exhibits many atherogenic effects, including the promotion of monocyte recruitment to the arterial endothelium and the induction of scavenger receptor expression. However, while atherosclerosis involves chronic inflammation within the arterial intima, it is unclear whether oxLDL alone provides a direct inflammatory stimulus for monocyte-macrophages. Furthermore, oxLDL is not a single, well-defined entity, but has structural and physical properties which vary according to the degree of oxidation. We tested the hypothesis that the biological effects of oxLDL will vary according to its degree of oxidation and that some species of oxLDL will have atherogenic properties, while other species may be responsible for its inflammatory activity. The atherogenic and inflammatory properties of LDL oxidized to predetermined degrees (mild, moderate and extensive oxidation) were investigated in a single system using human monocyte-derived macrophages. Expression of CD36 mRNA was up-regulated by mildly- and moderately-oxLDL, but not highly-oxLDL. The expression of the transcription factor, proliferator-activated receptor-gamma (PPARgamma), which has been proposed to positively regulate the expression of CD36, was increased to the greatest degree by highly-oxLDL. However, the DNA binding activity of PPARgamma was increased only by mildly- and moderately-oxLDL. None of the oxLDL species appeared to be pro-inflammatory towards monocytes, either directly or indirectly through mediators derived from lymphocytes, regardless of the degree of oxidation. (C) 2003 Published by Elsevier Science Ireland Ltd.
Resumo:
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.
Resumo:
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP.
Resumo:
While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.
Resumo:
BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.
Resumo:
The objective of this study was to evaluate the association of PPARG coactivator1 alpha (PPARGC1A), peroxisome proliferator activated receptor gamma (PPARG), and uncoupling protein1 (UCP1) gene polymorphisms with the metabolic syndrome (MS) in an Asian Indian population. Nine common polymorphisms were genotyped via polymerase chain reaction restriction fragment length polymorphism and direct sequencing in 950 normal glucose-tolerant subjects and 550 type 2 diabetic subjects, chosen randomly from the Chennai Urban Rural Epidemiological Study, an ongoing population based study in Southern India. Among the 9 polymorphisms examined, only the Thr394Thr variant of the PPARGC1A gene was significantly associated with diabetes and obesity. The genotype frequency of GA of Thr394Thr variant was 16% (138/887) in the nonMS group and 22% (136/613) in the MS group, and this genotype frequency was significantly higher with MS both in males (p = 0.01) and females (p = 0.05), compared to the without-MS group. Logistic regression analysis revealed that the odds ratio for MS for the susceptible genotype GA of Thr394Thr was 1.411 [95% CI: 1.03-1.84, p = 0.012]. In the multiple logistic regression analysis, however, there was no association of this polymorphism as an independent factor with MS. Hence, the study shows that the polymorphisms in the PPARGC1A, PPARG and UCP1 genes are not associated with MS in Asian Indians.
Resumo:
AIMS: The aim of the study was to investigate the association of serum adiponectin levels with the Pro12Ala polymorphism of the peroxisome proliferator activated receptor-gamma (PPARG) gene in Asian Indians. METHODS: We selected 400 diabetic subjects, 200 with the Pro12Pro genotype (100 male and 100 female) and 200 with the Pro12Ala genotype (100 male and 100 female) and 400 age- and sex-matched normal glucose tolerance subjects with similar genotype profiles from the Chennai Urban Rural Epidemiology Study. Fasting serum adiponection levels were measured using radioimmunoassay. The Pro12Ala polymorphism was genotyped by PCR-restriction fragment length polymorphism using BstUI. RESULTS: All clinical and biochemical parameters were similar in the subjects with the Pro12Pro and Pro12Ala genotypes. There was no significant difference in serum adiponectin values between subjects with the Pro12Pro and Pro12Ala genotypes (males 5.4 vs. 5.8 microg/ml, P = 0.546; females 6.9 vs. 7.2 microg/ml, P = 0.748). Adiponectin values did not differ among these two genotypes even when categorized based on their diabetes status (normal glucose tolerance Pro12Pro 7.9 vs. Pro12Ala 7.7 microg/ml, P = 0.994; diabetes Pro12Pro 4.7 vs. Pro12Ala 5.4 microg/ml, P = 0.622). CONCLUSION: The Pro12Ala polymorphism of the PPARG gene is not associated with serum adiponectin levels in Asian Indians.
Resumo:
OBJECTIVE: To evaluate whether polymorphisms in the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A) gene were related to body fat in Asian Indians. METHODS: Three polymorphisms of PPARGC1A gene, the Thr394Thr, Gly482Ser and +A2962G, were genotyped on 82 type 2 diabetic and 82 normal glucose tolerant (NGT) subjects randomly chosen from the Chennai Urban Rural Epidemiology Study using PCR-RFLP, and the nature of the variants were confirmed using direct sequencing. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies using an expectation-maximization algorithm. Visceral, subcutaneous and total abdominal fat were measured using computed tomography, whereas dual X-ray absorptiometry was used to measure central abdominal and total body fat. RESULTS: None of the three polymorphisms studied were in LD. The genotype (0.59 vs 0.32, P=0.001) and allele (0.30 vs 0.17, P=0.007) frequencies of Thr394Thr polymorphism were significantly higher in type 2 diabetic subjects compared to those in NGT subjects. The odds ratio for diabetes (adjusted for age, sex and body mass index) for the susceptible genotype, XA (GA+AA) of Thr394Thr polymorphism, was 2.53 (95% confidence intervals: 1.30-5.04, P=0.009). Visceral and subcutaneous fat were significantly higher in NGT subjects with XA genotype of the Thr394Thr polymorphism compared to those with GG genotype (visceral fat: XA 148.2+/-46.9 vs GG 106.5+/-51.9 cm(2), P=0.001; subcutaneous fat: XA 271.8+/-167.1 vs GG 181.5+/-78.5 cm(2), P=0.001). Abdominal (XA 4521.9+/-1749.6 vs GG 3445.2+/-1443.4 g, P=0.004), central abdominal (XA 1689.0+/-524.0 vs GG 1228.5+/-438.7 g, P<0.0001) and non-abdominal fat (XA 18763.8+/-8789.4 vs GG 13160.4+/-4255.3 g, P<0.0001) were also significantly higher in the NGT subjects with XA genotype compared to those with GG genotype. The Gly482Ser and +A2962G polymorphisms were not associated with any of the body fat measures. CONCLUSION: Among Asian Indians, the Thr394Thr (G --> A) polymorphism is associated with increased total, visceral and subcutaneous body fat.
Resumo:
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.
Resumo:
The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin, which are exposed following vessel damage. Initiation of platelet activation is through an immunoreceptor tyrosine-based activation motif (ITAM). C-type lectin receptor 2 (CLEC-2), following engagement by its endogenous ligand, podoplanin, also mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. This chapter compares the signaling pathways of both receptors and their role in hemostasis and thrombosis. Platelets are also increasingly implicated in processes beyond hemostasis and thrombosis. One such process is the efficient separation of the lymphatic and blood vasculatures, which is dependent on CLEC-2-mediated platelet activation.
Resumo:
Filamin A (FlnA) cross-links actin filaments and connects the Von Willebrand factor receptor GPIb-IX-V to the underlying cytoskeleton in platelets. Because FlnA deficiency is embryonic lethal, mice lacking FlnA in platelets were generated by breeding FlnA(loxP/loxP) females with GATA1-Cre males. FlnA(loxP/y) GATA1-Cre males have a macrothrombocytopenia and increased tail bleeding times. FlnA-null platelets have decreased expression and altered surface distribution of GPIbalpha because they lack the normal cytoskeletal linkage of GPIbalpha to underlying actin filaments. This results in approximately 70% less platelet coverage on collagen-coated surfaces at shear rates of 1,500/s, compared with wild-type platelets. Unexpectedly, however, immunoreceptor tyrosine-based activation motif (ITAM)- and ITAM-like-mediated signals are severely compromised in FlnA-null platelets. FlnA-null platelets fail to spread and have decreased alpha-granule secretion, integrin alphaIIbbeta3 activation, and protein tyrosine phosphorylation, particularly that of the protein tyrosine kinase Syk and phospholipase C-gamma2, in response to stimulation through the collagen receptor GPVI and the C-type lectin-like receptor 2. This signaling defect was traced to the loss of a novel FlnA-Syk interaction, as Syk binds to FlnA at immunoglobulin-like repeat 5. Our findings reveal that the interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor signaling and platelet function.
Resumo:
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Resumo:
BACKGROUND: Although the peroxisome proliferator-activated receptor γ (PPARγ) pathway is central in adipogenesis, it remains unknown whether it influences change in body weight (BW) and whether dietary fat has a modifying effect on the association. OBJECTIVES: We examined whether 27 single nucleotide polymorphisms (SNPs) within 4 genes in the PPARγ pathway are associated with the OR of being a BW gainer or with annual changes in anthropometry and whether intake of total fat, monounsaturated fat, polyunsaturated fat, or saturated fat has a modifying effect on these associations. METHODS: A case-noncase study included 11,048 men and women from cohorts in the European Diet, Obesity and Genes study; 5552 were cases, defined as individuals with the greatest BW gain during follow-up, and 6548 were randomly selected, including 5496 noncases. We selected 4 genes [CCAAT/enhancer binding protein β (CEBPB), phosphoenolpyruvate carboxykinase 2, PPARγ gene (PPARG), and sterol regulatory element binding transcription factor 1] according to evidence about biologic plausibility for interactions with dietary fat in weight regulation. Diet was assessed at baseline, and anthropometry was followed for 7 y. RESULTS: The ORs for being a BW gainer for the 27 genetic variants ranged from 0.87 (95% CI: 0.79, 1.03) to 1.12 (95% CI: 0.96, 1.22) per additional minor allele. Uncorrected, CEBPB rs4253449 had a significant interaction with the intake of total fat and subgroups of fat. The OR for being a BW gainer for each additional rs4253449 minor allele per 100 kcal higher total fat intake was 1.07 (95% CI: 1.02, 1.12; P = 0.008), and similar associations were found for subgroups of fat. CONCLUSIONS: Among European men and women, the influence of dietary fat on associations between SNPs in the PPARγ pathway and anthropometry is likely to be absent or marginal. The observed interaction between rs4253449 and dietary fat needs confirmation.
Resumo:
Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.
Resumo:
Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.