859 resultados para processed foods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O botulismo alimentar ocorre pela ingestão de toxinas pré-formadas pelo Clostridium botulinum, consideradas as mais potentes dentre as toxinas conhecidas. Caracteriza-se como uma doença de extrema gravidade, de evolução aguda, provoca distúrbios digestivos e neurológicos, em conseqüência à ingestão de diversos tipos de alimentos. As conservas caseiras estão entre os alimentos que oferecem maior risco à população consumidora. Os produtos de origem animal são frequentemente associados aos surtos da doença, destacando-se os embutidos, tais como salsichas, salames, presuntos e patês. Derivados do leite e enlatados, bem como produtos fermentados, são passíveis de provocar a intoxicação. As outras formas naturais da doença são botulismo por feridas e botulismo infantil, normalmente associado ao consumo de mel contendo esporos do Clostridium botulinum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films with a perovskite structure were prepared by the polymeric precursor method on a platinum-coated silicon substrate. High-quality thin films with uniform composition and thickness were successfully produced by dip-coating and spin-coating techniques. The resulting thin films prepared by dip and spin-coating showed a well-developed dense polycrystalline structure with uniform grain size distribution. The metal-BST-metal structure of the thin films displays good dielectric and ferroelectric properties. The ferroelectric nature to BaxSr1-xTiO3 (x = 0.8) thin film, indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed 2P(r) = 5.0 muC/cm(2) and E-c = 20 kV/cm. The capacitance-frequency curve reveals that the dielectric constant may reach a value of up to 794 at 1 kHz. on the other hand, the BaxSr1-xTiO3 (x = 0.4) thin films had paraelectric nature and dielectric constant and the dissipation factor at a frequency of 100 kHz were 680 and 0.01, respectively, for film annealed at 700 degreesC. In addition, an examination of the film's I-V curve at room temperature revealed the presence of two conduction regions in the BaxSr1-xTiO3 (x = 0.4 and 0.8) thin films, showing ohmic-like behavior at low voltage and a Schottky-emission or Poole-Frenkel mechanism at high voltage. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Although most of the physical properties of denture base resin polymerized by microwave energy have been shown to be similar to resins polymerized by the conventional heat polymerization method, the presence of porosity is a problem.Purpose. This study evaluated the effect of different microwave polymerization cycles on the porosity of a denture base resin designed for microwave polymerization.Material and methods. Thirty-two rectangular resin specimens (65 X 40 X 5 mm) were divided into 3 experimental groups (A, B, and C; Onda-Cryl, microwave-polymerized resin) and I control group (T; Classico, heat-polymerized resin), according to the following polymerization cycles: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes, and (T) 74degreesC for 9 hours. Porosity was calculated by measurement of the specimen volume before and after its immersion in water. Data were analyzed using 1-way analysis of variance (alpha = .05).Results. The mean values and SDs of the percent mean porosity were: A = 1.05% +/- 0.28%, B = 0.91% +/- 0.15%, C = 0.88% +/- 0.23%, T = 0.93% +/- 0.23%. No significant differences were found in mean porosity among the groups evaluated.Conclusion. Within the limitations of this study, a denture base resin specifically designed for microwave Polymerization tested was not affected by different polymerization cycles. Porosity was similar to the conventional heat-polymerized denture base resin tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin dioxide nanoparticle suspensions were synthesized at room temperature by the hydrolysis reaction of tin chloride (II) dissolved in ethanol. The effect of the initial tin (II) ion concentration, in the ethanolic solution, on the mean particle size of the nanoparticles was studied. The Sn2+ concentration was varied from 0.0025 to 0.1 M, and all other synthesis parameters were kept fixed. Moreover, an investigation of the effect of agglomeration on the nanoparticle characteristics (i.e., size and morphology) was also done by modifying the pH of the SnO2 suspensions. The different samples were characterized by transmission electron microscopy, optical absorption spectroscopy in the ultraviolet range, and photoluminescence measurements. The results show that higher initial ion concentrations and agglomeration lead to larger nanoparticles. The concentration effect is explained by enhanced growth due to a higher supersaturation of the liquid medium. However, it was observed that the agglomeration of the nanoparticles in suspension induce coarsening by the oriented-attachment mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the direct determination of Se in nutritionally relevant foods by graphite furnace atomic absorption spectrometry. Tungsten/rhodium carbide coating on the integrated platform of a transversely heated graphite atomizer or W coating with co-injection of Pd(NO3)(2) were used as a permanent modifiers. Samples and reference solutions were spiked with 500 mu g L-1 As and absorbance variations due to changes in experimental conditions were minimized. For 20 mu L aqueous analytical solutions delivered into the graphite tube, analytical curves in the 5.0-40 mu g L-1 with good linear correlation were established. Pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. The optimized heating program (temperature, ramp time, hold time) of the graphite tube of the Perkin-Elmer SIMAA 6000 atomic absorption spectrometer was: dry steps (110 degrees C, 5 s, 10 s; 130 degrees C, 15 s, 15 s); air-assisted pyrolysis step (600 degrees C, 20 s, 40 s; 20 degrees C, 1 s, 40 s); pyrolysis step (1300 degrees C, 10 s, 20 s); atomization step (2100 degrees C, 0 s, 4 s); clean step (2550 degrees C, 1 s, 5 s). The method was applied for Se determination in coconut water, coconut milk, soybean milk, cow milk, tomato juice, mango juice, grape juice and drinking water samples and four standard reference materials and results were in agreement at 95% confidence level. The lifetime of the tube was 500 firings and the relative standard deviations of measurements of typical samples containing 25 mu gL(-1) Se were 3.0% and 6.0% (n = 12) with and without internal standardization, respectively. The limits of detection were in the 0.35 mu g L-1-0.7 mu g Se L-1 range. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 98-109% range. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter reports on a process to prepare nanostructured PbTiO3 (PT) at room temperature with photoluminescence (PL) emission in the visible range. This process is based on the high-energy mechanical milling of ultrafine PbTiO3 powder. The results suggest that high-energy mechanical milling modifies the particle's structure, resulting in localized states in an interfacial region between the crystalline PT and the amorphous PT. These localized states are believed to be responsible for the PL obtained with short milling times. When long milling times are employed, the amorphous phase that is formed causes PL behavior. An alternative method to process nanostructured wide-band-gap semiconductors with active optical properties such as PL is described in this letter. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Sb addition on the microstructural and electrical conductivity of the SnO2 thin film was studied in this work. Experimental results show that the Sb addition allowed to control the grain size and electrical conductivity of the SnO2 thin film, resulting in a nanostructured material. The nanostructured Sb-doped SnO2 thin films present high electrical conductivity, even in the presence of high porosity, supporting the hypothesis that nanostructured material must possess strong electrical conductivity. This work involves important aspects that can be applied to the development of high performance transparent conducting thin film. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density of binary solutions and combinations of sucrose, glucose, fructose, citric acid, malic acid, pectin, and inorganic salts were measured with an oscillating tube density meter in the temperature range from 10degrees to 60degreesC, at varying concentrations. Density can be predicted with accuracy better than 5 x 10(-5) g cm(-3) using predictive equations obtained by fitting the experimental data. Available literature values agreed well with experimental data. Relations for the excess molar volume of these solutions were derived in terms of mole fraction and temperature. A thermodynamic model for the volumetric analysis of multicomponent aqueous solutions containing electrolyte and non-electrolyte compounds was also proposed. These models can be used for prediction of density of liquid food systems, specially fruit juices and beverages, based on composition and temperature, with high accuracy and without elaborate experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of minimally processed fruit has increased significantly in the last few years due to the high nutritional value, convenience and safety of minimally processed fruit. The objective of the present study was to evaluate the effects of the conservation temperature and processing conditions on the quality and shelf-life of minimally processed peaches. The processing procedure consisted of washing, sanitization, peeling and stone removal. To remove the stone, the fruit was cut longitudinally, and three types of products were obtained, including halves, quarters and one-eighth segments. The fruit pieces were immersed in 2% ascorbic acid for 3 min and were packed in rigid polystyrene trays (Meiwa (c) M-54) coated with 14 mu m PVC film (Omnifilm (TM)) (about 200 g per pack). The pieces were stored at 65% RH at 3, 6 or 9 degrees C for 12 days, and were evaluated every four days. The appearance, fresh mass loss, color, O-2 and CO2 concentration, acidity, total soluble solids, total and soluble pectin content and ascorbic acid concentration were measured. Minimally processed peaches stored at 3 degrees C maintained higher quality due to control of ripening and senescence Moreover, an interaction effect between one-eighth segments and a temperature of 3 degrees C was observed, and fruit with a superior appearance and higher soluble solids content was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sintering of SnO 2 compacts, obtained through slip casting, was studied by means of dilatometry, Hg porosimetry, scanning electron microscopy, and density measurement (Archimedes method). Sintering is strongly influenced by the green microstructure. Moreover, the sintering mechanisms are not dependent on the slurries' solid content up to 50% of solids in volume. Above this value, agglomerates are formed, leading to differential sintering inside and among the agglomerates. Another important point is the reduction of the temperature of maximum shrinkage rate when compared to tin oxide processed by isostatic pressing. This reduction is more accentuated when ammonium hydroxide is added to the suspension. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice used for human consumption or to refrigerate foods can be contaminated with pathogenic microorganisms and may become a vehicle for human infection. To evaluate the microbiological content of commercial ice and ice used to refrigerate fish and seafood, 60 ice samples collected at six different retail points in the city of Araraquara, SP, Brazil, were studied. The following parameters were determined: total plate counts (37° C and 4° C), most probable number (MPN) for total coliforms, fecal coliforms and Escherichia coli, presence of Salmonella spp., Shigella spp., Yersinia spp., E. coli, Vibrio cholerae and Aeromonas spp.. Results suggested poor hygienic conditions of ice production due to the presence of indicator micro-organisms. Fifty strains of E. coli of different serotypes, as well as one Y. enterocolitica biotype 1, serogroup 0:5, 27 and phage type Xz (Ye 1/05,27/Xz) and one Salmonella Enteritidis phage type 1 (PT1) were isolated. Aeromonas spp., Shigella spp. and V. cholerae were not detected. The presence of high numbers of coliforms, heterotrophic indicator micro-organisms and pathogenic strains suggested that commercial ice and ice used to refrigerate fish and seafood may rep resent a potential hazard to the consumer in our community. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.