573 resultados para predictability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strong link exists between stratospheric variability and anomalous weather patterns at the earth’s surface. Specifically, during extreme variability of the Arctic polar vortex termed a “weak vortex event,” anomalies can descend from the upper stratosphere to the surface on time scales of weeks. Subsequently the outbreak of cold-air events have been noted in high northern latitudes, as well as a quadrupole pattern in surface temperature over the Atlantic and western European sectors, but it is currently not understood why certain events descend to the surface while others do not. This study compares a new classification technique of weak vortex events, based on the distribution of potential vorticity, with that of an existing technique and demonstrates that the subdivision of such events into vortex displacements and vortex splits has important implications for tropospheric weather patterns on weekly to monthly time scales. Using reanalysis data it is found that vortex splitting events are correlated with surface weather and lead to positive temperature anomalies over eastern North America of more than 1.5 K, and negative anomalies over Eurasia of up to −3 K. Associated with this is an increase in high-latitude blocking in both the Atlantic and Pacific sectors and a decrease in European blocking. The corresponding signals are weaker during displacement events, although ultimately they are shown to be related to cold-air outbreaks over North America. Because of the importance of stratosphere–troposphere coupling for seasonal climate predictability, identifying the type of stratospheric variability in order to capture the correct surface response will be necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research suggests that the processing of agreement is affected by the distance between the agreeing elements. However, the unique contribution of structural distance (number of intervening syntactic phrases) to the processing of agreement remains an open question, since previous investigations do not tease apart structural and linear distance (number of intervening words). We used event related potentials (ERPs) to examine the extent to which structural distance impacts the processing of Spanish number and gender agreement. Violations were realized both within the phrase and across the phrase. Across both levels of structural distance, linear distance was kept constant, as was the syntactic category of the agreeing elements. Number and gender agreement violations elicited a robust P600 between 400 and 900ms, a component associated with morphosyntactic processing. No amplitude differences were observed between number and gender violations, suggesting that the two features are processed similarly at the brain level. Within-phrase agreement yielded more positive waveforms than across-phrase agreement, both for agreement violations and for grammatical sentences (no agreement by distance interaction). These effects can be interpreted as evidence that structural distance impacts the establishment of agreement overall, consistent with sentence processing models which predict that hierarchical structure impacts the processing of syntactic dependencies. However, due to the lack of an agreement by distance interaction, the possibility cannot be ruled out that these effects are driven by differences in syntactic predictability between the within-phrase and across-phrase configurations, notably the fact that the syntactic category of the critical word was more predictable in the within-phrase conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the predictability of real estate asset returns using a number of time series techniques. A vector autoregressive model, which incorporates financial spreads, is able to improve upon the out of sample forecasting performance of univariate time series models at a short forecasting horizon. However, as the forecasting horizon increases, the explanatory power of such models is reduced, so that returns on real estate assets are best forecast using the long term mean of the series. In the case of indirect property returns, such short-term forecasts can be turned into a trading rule that can generate excess returns over a buy-and-hold strategy gross of transactions costs, although none of the trading rules developed could cover the associated transactions costs. It is therefore concluded that such forecastability is entirely consistent with stock market efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the effect of short- and long-term interest rates, and interest rate spreads upon real estate index returns in the UK. Using Johansen's vector autoregressive framework, it is found that the real estate index cointegrates with the term spread, but not with the short or long rates themselves. Granger causality tests indicate that movements in short term interest rates and the spread cause movements in the returns series. However, decomposition of the forecast error variances from VAR models indicate that changes in these variables can only explain a small proportion of the overall variability of the returns, and that the effect has fully worked through after two months. The results suggest that these financial variables could potentially be used as leading indicators for real estate markets, with corresponding implications for return predictability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the impact of a full interactive ocean on daily initialised 15 day hindcasts of the Madden-Julian oscillation (MJO), measured against a Met Office Unified Model (MetUM) atmosphere control simulation (AGCM) during a 3 month period of the Year of Tropical Convection (YOTC). Results indicated that the coupled configuration (CGCM) extends MJO predictability over that of the AGCM, by up to 3-5 days. Propagation is improved in the CGCM, which we partly attribute to a more realistic phase relationship between sea surface temperature (SST) and convection. In addition, the CGCM demonstrates skill in representing downwelling oceanic Kelvin and Rossby waves which warm SSTs along their trajectory, with the potential to feed back on the atmosphere. These results imply that an ocean model capable of simulating internal ocean waves may be required to capture the full effect of air-sea coupling for the MJO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decadal and longer timescale variability in the winter North Atlantic Oscillation (NAO) has considerable impact on regional climate, yet it remains unclear what fraction of this variability is potentially predictable. This study takes a new approach to this question by demonstrating clear physical differences between NAO variability on interannual-decadal (<30 year) and multidecadal (>30 year) timescales. It is shown that on the shorter timescale the NAO is dominated by variations in the latitude of the North Atlantic jet and storm track, whereas on the longer timescale it represents changes in their strength instead. NAO variability on the two timescales is associated with different dynamical behaviour in terms of eddy-mean flow interaction, Rossby wave breaking and blocking. The two timescales also exhibit different regional impacts on temperature and precipitation and different relationships to sea surface temperatures. These results are derived from linear regression analysis of the Twentieth Century and NCEP-NCAR reanalyses and of a high-resolution HiGEM General Circulation Model control simulation, with additional analysis of a long sea level pressure reconstruction. Evidence is presented for an influence of the ocean circulation on the longer timescale variability of the NAO, which is particularly clear in the model data. As well as providing new evidence of potential predictability, these findings are shown to have implications for the reconstruction and interpretation of long climate records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quasi-stationary convective bands can cause large localised rainfall accumulations and are often anchored by topographic features. Here, the predictability of and mechanisms causing one such band are determined using ensembles of the Met Office Unified Model at convection-permitting resolution (1.5 km grid length). The band was stationary over the UK for 3 h and produced rainfall accumulations of up to 34 mm. The amount and location of the predicted rainfall was highly variable despite only small differences between the large-scale conditions of the ensemble members. Only three of 21 members of the control ensemble produced a stationary rain band; these three had the weakest upstream winds and hence lowest Froude number. Band formation was due to the superposition of two processes: lee-side convergence resulting from flow around an upstream obstacle and thermally forced convergence resulting from elevated heating over the upstream terrain. Both mechanisms were enhanced when the Froude number was lower. By increasing the terrain height (thus reducing the Froude number), the band became more predictable. An ensemble approach is required to successfully predict the possible occurrence of such quasi-stationary convective events because the rainfall variability is largely modulated by small variations of the large-scale flow. However, high-resolution models are required to accurately resolve the small-scale interactions of the flow with the topography upon which the band formation depends. Thus, although topography provides some predictability, the quasi-stationary convective bands anchored by it are likely to remain a forecasting challenge for many years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. CLIVAR (CLImate VARiability and predictability of the ocean-atmosphere system). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate the decrease in tropical cyclone numbers previously shown to be a common response of climate models in a warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the determinants of cross-platform arbitrage profits. We develop a structural model that enables us to decompose the likelihood of an arbitrage opportunity into three distinct factors: the fixed cost to trade the opportunity, the level at which one of the platforms delays a price update and the impact of the order flow on the quoted prices (inventory and asymmetric information effects). We then investigate the predictions from the theoretical model for the European Bond market with the estimation of a probit model. Our main finding is that the results found in the empirical part corroborate strongly the predictions from the structural model. The event of a cross market arbitrage opportunity has a certain degree of predictability where an optimal ex ante scenario is represented by a low level of spreads on both platforms, a time of the day close to the end of trading hours and a high volume of trade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.