969 resultados para pre-image attack
Resumo:
In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.
Resumo:
Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.
Resumo:
The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.
Resumo:
In Chapter 10, Adam and Dougherty describe the application of medical image processing to the assessment and treatment of spinal deformity, with a focus on the surgical treatment of idiopathic scoliosis. The natural history of spinal deformity and current approaches to surgical and non-surgical treatment are briefly described, followed by an overview of current clinically used imaging modalities. The key metrics currently used to assess the severity and progression of spinal deformities from medical images are presented, followed by a discussion of the errors and uncertainties involved in manual measurements. This provides the context for an analysis of automated and semi-automated image processing approaches to measure spinal curve shape and severity in two and three dimensions.
Resumo:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%- 80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.
Resumo:
Many user studies in Web information searching have found the significant effect of task types on search strategies. However, little attention was given to Web image searching strategies, especially the query reformulation activity despite that this is a crucial part in Web image searching. In this study, we investigated the effects of topic domains and task types on user’s image searching behavior and query reformulation strategies. Some significant differences in user’s tasks specificity and initial concepts were identified among the task domains. Task types are also found to influence participant’s result reviewing behavior and query reformulation strategies.
Resumo:
Everything (2008) is a looped 3 channel digital video (extracted from a 3D computer animation) that appropriates a range of media including photography, drawing, painting, and pre-shot video. The work departs from traditional time-based video which is generally based on a recording of an external event. Instead, “Everything” constructs an event and space more like a painting or drawing might. The works combines constructed events (including space, combinations of objects, and aesthetic relationship of forms) with pre-recorded video footage and pre-made paintings and drawings. The result is a montage of objects, images – both still and moving – and abstracted ‘painterly’ gestures. This technique creates a complex temporal displacement. 'Past' refers to pre-recorded media such as painting and photography, and 'future' refers to a possible virtual space not in the present, that these objects may occupy together. Through this simultaneity between the real and the virtual, the work comments on a disembodied sense of space and time, while also puncturing the virtual with a sense of materiality through the tactility of drawing and painting forms and processes. In so doing, te work challenges the perspectival Cartesian space synonymous with the virtual. In this work the disembodied wandering virtual eye is met with an uncanny combination of scenes, where scale and the relationships between objects are disrupted and changed. Everything is one of the first international examples of 3D animation technology being utilised in contemporary art. The work won the inaugural $75,000 Premier of Queensland National New Media Art Award and was subsequently acquired by the Queensland Art Gallery. The work has been exhibited and reviewed nationally and internationally.
Resumo:
Relics is a single-channel video derived from a 3D computer animation that combines a range of media including photography, drawing, painting, and pre-shot video. It is constructed around a series of pictorial stills which become interlinked by the more traditionally filmic processes of panning, zooming and crane shots. In keeping with these ideas, the work revolves around a series of static architectural forms within the strangely menacing enclosure of a geodesic dome. These clinical aspects of the work are complemented by a series of elements that evoke fluidity : fireworks, mirrored biomorphic forms and oscillating projections. The visual dimension of the work is complemented by a soundtrack of rainforest bird calls. Through its ambiguous combination of recorded and virtual imagery, Relics explores the indeterminate boundaries between real and virtual space. On the one hand, it represents actual events and spaces drawn from the artist studio and image archive; on the other it represents the highly idealised spaces of drawing and 3D animation. In this work the disembodied wandering virtual eye is met with an uncanny combination of scenes, where scale and the relationships between objects are disrupted and changed. Through this simultaneity between the real and the virtual, the work conveys a disembodied sense of space and time that carries a powerful sense of affect. Relics was among the first international examples of 3D animation technology in contemporary art. It was originally exhibited in the artist’s solo show, ‘Places That Don’t Exist’ (2007, George Petelin Gallery, Gold Coast) and went on to be included in the group shows ‘d/Art 07/Screen: The Post Cinema Experience’ (2007, Chauvel Cinema, Sydney) , ‘Experimenta Utopia Now: International Biennial of Media Art’ (2010, Arts Centre, Melbourne and national touring venues) and ‘Move on Asia’ (2009, Alternative space Loop, Seoul and Para-site Art Space, Hong Kong) and was broadcast on Souvenirs from Earth (Video Art Cable Channel, Germany and France). The work was analysed in catalogue texts for ‘Places That Don’t Exist’ (2007), ‘d/Art 07’ (2007) and ‘Experimenta Utopia Now’ (2010) and the’ Souvenirs from Earth’ website.
Resumo:
In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.
Resumo:
The experiences of transition to the teaching profession have a significant impact on a teachers’ potential length of career, feelings of professional efficacy and the quality of performance in the classroom (Gore & Thomas, 2003). While the transition to practice is characterized by much expectation and excitement, it also a time of stress and uncertainty for many beginning teachers. As such, it is important to investigate this period of transition for beginning teachers. This paper explores graduate teachers perceptions of their personal ‘preparedness to teach’. The group is graduating from one Australian university, and the data is captured at the end of their teacher preparation programs,before they take up positions in schools. These graduating pre-service teachers are from one year graduate entry programs that include individual programs of early years, middle years and senior years. The key findings indicate that this group of graduating pre-service teachers are already engaged in some level of reflective practice and are actively seeking further professional learning to improve the practical aspects of their classroom teaching.
Resumo:
We address the problem of face recognition on video by employing the recently proposed probabilistic linear discrimi-nant analysis (PLDA). The PLDA has been shown to be robust against pose and expression in image-based face recognition. In this research, the method is extended and applied to video where image set to image set matching is performed. We investigate two approaches of computing similarities between image sets using the PLDA: the closest pair approach and the holistic sets approach. To better model face appearances in video, we also propose the heteroscedastic version of the PLDA which learns the within-class covariance of each individual separately. Our experi-ments on the VidTIMIT and Honda datasets show that the combination of the heteroscedastic PLDA and the closest pair approach achieves the best performance.
Resumo:
Background/aims: Access to appropriate health care following an acute cardiac event is important for positive outcomes. The aim of the Cardiac ARIA index was to derive an objective, comparable, geographic measure reflecting access to cardiac services across Australia. Methods: Geographic Information Systems (GIS) were used to model a numeric-alpha index based on acute management from onset of symptoms to return to the community. Acute time frames have been calculated to include time for ambulance to arrive, assess and load patient, and travel to facility by road 40–80 kph. Results: The acute phase of the index was modelled into five categories: 1 [24/7 percutaneous cardiac intervention (PCI) ≤1 h]; 2 [24/7 PCI 1–3 h, and PCI less than an additional hour to nearest accident and emergency room (A&E)]: 3 [Nearest A&E ≤3 h (no 24/7 PCI within an extra hour)]: 4 [Nearest A&E 3–12 h (no 24/7 PCI within an extra hour)]: 5 [Nearest A&E 12–24 h (no 24/7 PCI within an extra hour)]. Discharge care was modelled into three categories based on time to a cardiac rehabilitation program, retail pharmacy, pathology services, hospital, GP or remote clinic: (A) all services ≤30 min; (B) >30 min and ≤60 min; (C) >60 min. Examples of the index indicate that the majority of population locations within capital cities were category 1A; Alice Springs and Byron Bay were 3A; and the Northern Territory town of Maningrida had minimal access to cardiac services with an index ranking of 5C. Conclusion: The Cardiac ARIA index provides an invaluable tool to inform appropriate strategies for the use of scarce cardiac resources.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
There are increasing opportunities in many countries for pre-service teachers to engage in a transnational school-based experience as part of study abroad programmes. The transformative potential of such transnational teaching experiences is recorded in research studies, often supported by data from participant surveys. However, there has been a lack of evidence investigating how shifts in professional understanding derive from such experiences. This qualitative study addresses this issue by exploring the perspectives of 16 pre-service teachers of English as a Second language from Hong Kong, who engaged in transnational teaching activities with primary school pupils in Australia, during their study abroad program. Discourse analysis of participants’ dialogues traces how they encountered conflicting Discourses of ‘student-centredness’ in the Australian classroom. Reflecting dialogically on their experiences led participants to negotiate and reframe their understandings of language teaching pedagogy and themselves as language teachers. The findings demonstrate the importance of both peer and lecturer feedback into the process of dialogic reflection and the need for more longitudinal research into the impact of transnational school-based experience in pre-service teacher education.