963 resultados para power-aware routing
Resumo:
This panel discusses the impact of Green IT on information systems and how information systems can meet environmental challenges and ensure sustainability. We wish to highlight the role of green business processes, and specifically the contributions that the management of these processes can play in leveraging the transformative power of IS in order to create an environmentally sustainable society. The management of business processes has typically been thought of in terms of business improvement alongside the dimensions time, cost, quality, or flexibility – the so-called ‘devil’s quadrangle’. Contemporary organizations, however, increasingly become aware of the need to create more sustainable, IT-enabled business processes that are also successful in terms of their economic, ecological, as well as social impact. Exemplary ecological key performance indicators that increasingly find their way into the agenda of managers include carbon emissions, data center energy, or renewable energy consumption (SAP 2010). The key challenge, therefore, is to extend the devil’s quadrangle to a devil’s pentagon, including sustainability as an important fifth dimension in process change.
Resumo:
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
In recent decades, assessment practices within Australian law schools have moved from the overwhelming use of end-of-year closed-book examinations to an increase in the use of a wider range of techniques. This shift is often characterised as providing a ‘better’ learning environment for students, contributing more positively to their own ‘personal development’ within higher education, or, considered along the lines of critical legal thought, as ‘liberating’ them from the ‘conservatising’ and ‘indoctrinating’ effects of the power relations that operate in law schools. This paper seeks to render problematic such liberal-progressive narratives about these changes to law school assessment practices. It will do so by utilising the work of French historian and philosopher Michel Foucault on power, arguing that the current range of assessment techniques demonstrates a shift in the ‘economy’ of power relations within the law school. Rather than ‘liberating’ students from relations of power, these practices actually extend the power relations through which students are governed. This analysis is intended to inform legal education research and assessment practice by providing a far more nuanced conceptual framework than one that seeks to ‘free’ law students from these ‘repressive’ practices, or hopes to ‘objectively’ contribute to their ‘personal development’.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
In this editorial letter, we provide the readers of Information Systems with a birds-eye introduction to Process-aware Information Systems (PAIS) – a sub-field of Information Systems that has drawn growing attention in the past two decades, both as an engineering and as a management discipline. Against this backdrop, we briefly discuss how the papers included in this special issue contribute to extending the body of knowledge in this field.
Resumo:
Web service technology is increasingly being used to build various e-Applications, in domains such as e-Business and e-Science. Characteristic benefits of web service technology are its inter-operability, decoupling and just-in-time integration. Using web service technology, an e-Application can be implemented by web service composition — by composing existing individual web services in accordance with the business process of the application. This means the application is provided to customers in the form of a value-added composite web service. An important and challenging issue of web service composition, is how to meet Quality-of-Service (QoS) requirements. This includes customer focused elements such as response time, price, throughput and reliability as well as how to best provide QoS results for the composites. This in turn best fulfils customers’ expectations and achieves their satisfaction. Fulfilling these QoS requirements or addressing the QoS-aware web service composition problem is the focus of this project. From a computational point of view, QoS-aware web service composition can be transformed into diverse optimisation problems. These problems are characterised as complex, large-scale, highly constrained and multi-objective problems. We therefore use genetic algorithms (GAs) to address QoS-based service composition problems. More precisely, this study addresses three important subproblems of QoS-aware web service composition; QoS-based web service selection for a composite web service accommodating constraints on inter-service dependence and conflict, QoS-based resource allocation and scheduling for multiple composite services on hybrid clouds, and performance-driven composite service partitioning for decentralised execution. Based on operations research theory, we model the three problems as a constrained optimisation problem, a resource allocation and scheduling problem, and a graph partitioning problem, respectively. Then, we present novel GAs to address these problems. We also conduct experiments to evaluate the performance of the new GAs. Finally, verification experiments are performed to show the correctness of the GAs. The major outcomes from the first problem are three novel GAs: a penaltybased GA, a min-conflict hill-climbing repairing GA, and a hybrid GA. These GAs adopt different constraint handling strategies to handle constraints on interservice dependence and conflict. This is an important factor that has been largely ignored by existing algorithms that might lead to the generation of infeasible composite services. Experimental results demonstrate the effectiveness of our GAs for handling the QoS-based web service selection problem with constraints on inter-service dependence and conflict, as well as their better scalability than the existing integer programming-based method for large scale web service selection problems. The major outcomes from the second problem has resulted in two GAs; a random-key GA and a cooperative coevolutionary GA (CCGA). Experiments demonstrate the good scalability of the two algorithms. In particular, the CCGA scales well as the number of composite services involved in a problem increases, while no other algorithms demonstrate this ability. The findings from the third problem result in a novel GA for composite service partitioning for decentralised execution. Compared with existing heuristic algorithms, the new GA is more suitable for a large-scale composite web service program partitioning problems. In addition, the GA outperforms existing heuristic algorithms, generating a better deployment topology for a composite web service for decentralised execution. These effective and scalable GAs can be integrated into QoS-based management tools to facilitate the delivery of feasible, reliable and high quality composite web services.
Resumo:
One of the impediments to large-scale use of wind generation within power system is its variable and uncertain real-time availability. Due to the low marginal cost of wind power, its output will change the merit order of power markets and influence the Locational Marginal Price (LMP). For the large scale of wind power, LMP calculation can't ignore the essential variable and uncertain nature of wind power. This paper proposes an algorithm to estimate LMP. The estimation result of conventional Monte Carlo simulation is taken as benchmark to examine accuracy. Case study is conducted on a simplified SE Australian power system, and the simulation results show the feasibility of proposed method.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.
Resumo:
The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.