944 resultados para plasminogen activator inhibitor 1
Resumo:
Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.
Resumo:
An improved synthetic route to α(1→3)/α(1→2)-linked mannooligosaccharides has been developed and applied to a more efficient preparation of the potent anti-angiogenic sulfated pentasaccharide, benzyl Manα(1→3)-Manα(1→3)-Manα(1→3)-Manα(1→2)-Man hexadecasulfate, using only two monosaccharide building blocks. Of particular note are improvements in the preparation of both building blocks and a simpler, final deprotection strategy. The route also provides common intermediates for the introduction of aglycones other than benzyl, either at the building block stage or after oligosaccharide assembly. The anti-angiogenic activity of the synthesized target compound was confirmed via the rat aortic assay.
Resumo:
Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.
Resumo:
Although tissue inhibitor of metalloproteinase-2 (TIMP-2) is known to be not only an inhibitor of matrix metalloproteinases (MMP) but also a cofactor for membrane-type 1 MMP (MT1-MMP)-mediated MMP-2 activation, it is still unclear how TIMP-2 regulates MMP-2 activation and cleavage of substrates by MT1-MMP. In the present study we examined the levels of cell-surface MT1-MMP, MMP-2 activation and cleavage of MT1-MMP substrates in 293T cells transfected with the MT1-MMP and TIMP-2 genes. Co-expression of TIMP-2 at an appropriate level increased the level of cell-surface MT1-MMP, both the TIMP-2-bound and free forms, and generated processed MMP-2 with gelatin-degrading activity. In contrast, MT1-MMP substrates testican-1 and syndecan-1 were cleaved by the cells expressing MT1-MMP, which was inhibited by TIMP-2 even at levels that stimulate MMP-2 activation. These results suggest that TIMP-2 environment determines MT1-MMP substrate choice between direct cleavage of its own substrates and MMP-2 activation.
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
The effects of the herbicide, 3-amino-1,2,4-triazole, an inhibitor of heme synthesis in rat liver, have been examined in the mold Neurospora crassa. The drug is a potent inhibitor of the growth of the mold and produces biochemical changes identical to those produced by chloramphenicol. 3-Amino-1,2,4-triazole, like chloramphenicol, is a direct and specific inhibitor of protein synthesis on mitoribosomes. A decrease in the levels of mitochondrial proteins which are completely or partly made on mitoribosomes and an accumulation in the levels of mitochondrial proteins of cytosolic origin have been observed. Both drugs depress porphyrin and heme levels, but there is actually an elevation in the levels of δ-aminolevulinate dehydratase, the rate-limiting enzyme of the heme-biosynthetic pathway in Neurospora crassa. In liver the enzyme is present in non-limiting amounts and the levels are depressed under conditions of 3-amino-1,2,4-triazole treatment. In Neurospora crassa the ‘derepression’ of δ-aminolevulinate dehydratase under conditions of 3-amino-1,2,4-triazole or chloramphenicol treatment is only partial because the drugs inhibit protein synthesis on mitoribosomes. It is concluded that an optimal rate of protein synthesis on mitoribosomes is necessary to maintain an adequate rate of heme synthesis.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein possessing multiple biological and pharmacological activities. One of its major actions is inhibition of human immunodeficiency virus (HIV) replication. The mechanism is still not clear. It is
Resumo:
Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-fa
Resumo:
Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.
Resumo:
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berbefine is an excellent corrosion inhibitor for mild steel immersed in 1M H2SO4. Potentiodynamic curves suggested that berbefine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 x 10(-4) M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berbefine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study. (c) 2005 Elsevier B.V. All rights reserved.