999 resultados para plant-cane
Resumo:
Considering the economic importance of the sugar industry among ourselves, the authors carried out a field experiment (Latin square) with Co 290 sugar cane, on a white sandy soil of Piracicaba, State of São Paulo, Brazil, applying NaCl in increasing rates (from 6.8 to 54.5 grams per plant), in order to study the effects of chlorides, on productivity and on the composition of juice. No toxic or stimulating effect was found, and there was no change in yield, in degree of purity of the juice, in general aspect of plants or in colour of leaves and culms. No difference was observed between potassium sulphate or chloride, as source of potash for sugar cane culture. Data collected and the literature cited suggest: (a) that the use of the variety Co 290 is indicated for soils rich in chlorine, such as the saline soils of the North-east and Atlantic Coast of Brazil; (b) that it is necessary to extend studies in Research Institutes and Agricultural Experiment Stations of the country to verify the behaviour of other varieties of sugar cane in the types of soils mentioned, especially with respect their yielding capacity. The authors are already planning such investigations.
Resumo:
Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.
Resumo:
This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.
Resumo:
In this paper the authors have studied the manganese absorption by the sugar cane plant, variety Co 419, in samples cut monthly, from the 6th to 15th month of life in the climate prevailing at Piracicaba, State of Sao Paulo, Brazil. From October to February (6 th to 10 th month of the plant life), which coincided with the rainy season, the manganese content was higher in the stalk than in the leaves, for both treatments, fertilized and unfertilized. There was a sharp decrease in manganese content in the stalks, after February, in both reatments. In the leaves there was little variation in manganese content throughout the plant tissue. The stalks from the unfertilized plots had a larger variation in manganese content, specially from the 6 th to the 10 th month. In the leaves of the sugar cane from the unfertilized plots, the manganese content varied from 116 to 220 ppm, whereas in the fertilized treatments thire was a variation from 150 to 220 ppm. From these results, althoug not being a foliar analyses, and considering the easy availability of manganese in acid soils, there must be enough of it, if we consider 40 ppm (EVANS, 1955) as a minimum for healthy plants.
Resumo:
This paper describes the results obtained from the determination of iron in sugar cane according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. The iron was determined by 1-10- phenanthroline method, in samples cut monthly from 7th to 15th month from an experiment consisted de 3 plots fertilized with amonium sulfate, superphosphate and potassium cloride. The concentration of iron in the stalks and in the leaves varies according to the age of the plant. A ton of fresh stalks 15 months old contains 78,71 g of iron.
Resumo:
In this paper the authors describe the results obtained from the determination of molybdenum in sugar cane plant, grown in soils and climate prevailing in Piracicaba, State of São Paulo, Brazil. The molybdenum was determined in samples cut monthly from the 8th to 14th month, from an experiment consisting of 6 plots, 3 fertilized and 3 unfertilized. The fertilized treatment received 40 kg N (ammonium sulfate) 100 kg P2O3, (superphosphate) and 40 kg K2O (potassium chloride) per hectare, just before planting. Molybdenum was determined by thiocyanate-stannous chloride method, using carbon tetrachloride-butyl alcohol misture, for extrating the colored complex. The results obtained show a parallelism in the absorption of molybdenum by the plants of both treatments. The concentration of molybdenum in the stalks have a tendency to decrease, where as it kept more or less constant in leaves, with a exception in the 14° month when it rised probable because of a migration of molybdenum of the stalks to the leaves. The total amount molybdenum taken up was higher with the fertilized plot due its greater mass prodution.
Resumo:
A localização do superfosfato (marcado com P32) no maracujá em produção foi estudada em condições de plantação comercial. Verificou-se que as aplicações em sulcos circulares ou faixas superficiais ao redor da planta tem eficiência equivalente sendo esses métodos três vezes superiores à localização do adubo em furos no solo. A pulverização foliar, por sua vez, mostrou-se 20 vezes mais eficiente que a aplicação no solo de acordo com os dois primeiros métodos.
Resumo:
v.38:no.3(1976)
Resumo:
1. Tagged superphosphate was applied to 2.5 year old passion fruit plants from a commercial plantation established in a sandy loam. 2. 100 grams of the fertilizer were distributed in the following ways: in a circular furrow 20 cm around the plant 40 cm from the stems; in a circular strip 10 cm wide, 40 cm from the stems; in six holes around the plants, 40 cm from the stems 20 cm deep, 2.5 cm in diameter. 3. 10 grams of the fertilizer in 11 of water were sprayed to the leaves. 4. Three weeks after the treatments were made, leaf samples were taken for analysis. 5. Determinations of specific activities both in the leaves and in the fertilizer used have shown that R in the plant was derived from the superphosphate in the following relative proportions (by making the first treatment equal to 100): circular furrow = 100; circular strip = 120; holes = 30; foliar spray = 230.
Resumo:
Stink bugs are seed/fruit sucking insects feeding on an array of host plants. Among them, an exotic tree called privet, Ligustrum lucidum Ait. (Oleaceae), is very common in the urban areas of the Brazilian subtropics, where it is utilized as food source and shelter for over a decem species of bugs, year round. The species composition, their performance and abundance on this host, and possible causes for this association are discussed and illustrated.
Resumo:
The impact of a power plant cooling system in the Bahía Blanca estuary (Argentina) on the survival of target zooplanktonic organisms (copepods and crustacean larvae) and on overall mesozooplankton abundance was evaluated over time. Mortality rates were calculated for juveniles and adults of four key species in the estuary: Acartia tonsa Dana, 1849 and Eurytemora americana Williams, 1906 (native and invading copepods), and larvae of the crab Chasmagnathus granulata Dana, 1851 and the invading cirriped Balanus glandula Darwin, 1854. Mean total mortality values were up to four times higher at the water discharge site than at intake, though for all four species, significant differences were only registered in post-capture mortality. The findings show no evidence of greater larval sensitivity. As expected, the sharpest decrease in overall mesozooplankton abundance was found in areas close to heated water discharge.
Resumo:
v.28(1938)
Resumo:
v. 6 (1903)
Resumo:
v. 1 - 2