927 resultados para plant growth promoting bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2-year study was carried out on established trees at two sites in southeastern Queensland, Australia, to identify environmental factors that influenced rooting of Backhousia citriodora from cuttings. Complex interactions of rainfall events above 20 mm from the preceding month and mean maximum temperature on stock plants resulted in a correlation with rooting success of r = 0.81 and 0.74 for sites at The University Of Queensland, Gatton Campus, and Cedar Glen, respectively. A more detailed investigation under controlled environmental conditions showed that maintaining stock plants at temperatures between 10 and 30degreesC had no direct effect on rooting capacity. However, temperature was correlated with growth, which may have an indirect effect on root formation. In spring floral initiation was found to only delay rooting and had no effect on the final rooting percentage. A series of seasonal experiments demonstrated that application of the auxins indole-3-acetic acid, indole-3-butyric acid and napthaleneacetic acid over a range of concentrations (1000-8000 mug/ml) did not significantly increase rooting compared to the control and there is no practical advantage in applying auxins. Seasonal results and the temperature experiment also suggest that under a glasshouse environment with higher temperatures in winter and an adequate supply of water, B. citriodora cuttings can be successfully rooted over the whole year. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been 75 years since Evans and Long identified a somatic growth-promoting substance in pituitary extracts, yet it is only in the last 20 years that the molecular basis for this action has been established. Three key elements in this elucidation were the cloning of the GH receptor, the identification of Janus kinase (JAK) 2 as the receptor-associated tyrosine kinase, and the delineation of signal transduction and activators of transcription (STAT) 5a/b as the key transcription factor(s) activated by JAK2. The interaction between these three elements results in enhanced postnatal growth and is the subject of this review. We describe a new model for GH receptor activation based on subunit rotation within a constitutive dimer, together with the phenotype and hepatic transcript profile of mice with targeted knockins to the receptor cytoplasmic domain. These support a central role for STAT5a/b in postnatal growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High salt levels in mine spoils have been identified as one of the major chemical limitations to plant establishment after coal mining in central Queensland. Soil solution extracts from spoils indicated that EC levels of up to 26 dS/m could be encountered. Glasshouse trials examined the emergence and growth of Eucalyptus citriodora, Eucalyptus camaldulensis and Eucalyptus populnea provenances and Acacia salicina subjected to such EC levels. Relatively low levels of salt (100 mM NaCl, or 11 dS/m) with respect to the levels encountered on mine spoils, were enough to substantially reduce the rate and percentage emergence of all eucalypt provenances. A. salicina was found to be superior to the eucalypts in its ability to emerge and survive under saline conditions. It was the only species to have seedlings emerge and survive at 200 mM NaCl (20 dS/m), and the effect of salt on decreasing seedling dry weight was less pronounced for A. salicina than for any of the eucalypts. Established plants survived the range of salt treatments far better than emerging seedlings, with survival of established plants being reduced only at 300 and 400 mM NaCl (28 and 36 dS/m, respectively). A. salicina performed significantly better at 300 and 400 mM NaCl than most of the eucalypts studied. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that secondary metabolites play an important role in plant chemical defense. In an effort to find natural herbicides research on plant growth regulatory activity of secondary metabolites has received more and more attention recently. The genus Piper has been an important source for useful secondary metabolites.^ Crude extracts from Piper species inhibited gram-positive bacteria and higher plant growth under laboratory conditions. Bioassay-guided isolation and purification lead to the identification of safrole, a phenylpropene, as the responsible agent for the inhibitory activity. Safrole was found to leach from naturally fallen leaves with water. Mechanisms of plant growth inhibition by safrole were investigated. Disassociation of cell membrane from cell walls was determined to be a major cause.^ Phenylpropenes structurally similar to safrole had similar phytogrowth inhibitory activity. It is postulated that phenylpropanoids are an important group of naturally occurring secondary metabolites in plant-plant interactions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth, morphology and biomass allocation in response to water depth was studied in white water lily,Nymphaea odorata Aiton. Plants were grown for 13 months in 30, 60 and 90 cm water in outdoor mesocosms in southern Florida. Water lily plant growth was distinctly seasonal with plants at all water levels producing more and larger leaves and more flowers in the warmer months. Plants in 30 cm water produced more but smaller and shorter-lived leaves than plants at 60 cm and 90 cm water levels. Although plants did not differ significantly in total biomass at harvest, plants in deeper water had significantly greater biomass allocated to leaves and roots, while plants in 30 cm water had significantly greater biomass allocated to rhizomes. Although lamina area and petiole length increased significantly with water level, lamina specific weight did not differ among water levels. Petiole specific weight increased significantly with increasing water level, implying a greater cost to tethering the larger laminae in deeper water. Lamina length and width scaled similarly at different water levels and modeled lamina area (LA) accurately (LAmodeled = 0.98LAmeasured + 3.96, R2 = 0.99). Lamina area was highly correlated with lamina weight (LW = 8.43LA − 66.78, R2 = 0.93), so simple linear measurements can predict water lily lamina area and lamina weight. These relationships were used to calculate monthly lamina surface area in the mesocosms. Plants in 30 cm water had lower total photosynthetic surface area than plants in 60 cm and 90 cm water levels throughout, and in the summer plants in 90 cm water showed a great increase in photosynthetic surface area as compared to plants in shallower water. These results support setting Everglades restoration water depth targets for sloughs at depths ≥45 cm and suggest that in the summer optimal growth for white water lilies occurs at depths ≥75 cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associations between different bacteria and various tumours have been reported in patients for decades. Studies involving characterisation of bacteria within tumour tissues have traditionally been in the context of tumourigenesis as a result of bacterial presence within healthy tissues, and in general, dogma holds that such bacteria are causative agents of malignancy (directly or indirectly). While evidence suggests that this may be the case for certain tumour types and bacterial species, it is plausible that in many cases, clinical observations of bacteria within tumours arise from spontaneous infection of established tumours. Indeed, growth of bacteria specifically within tumours following deliberate systemic administration has been demonstrated for numerous bacterial species at preclinical and clinical levels. We present the available data on links between bacteria and tumours, and propose that besides the few instances in which pathogens are playing a pathogenic role in cancer, in many instances, the prevalent relationship between solid tumours and bacteria is opportunistic rather than causative, and discuss opportunities for exploiting tumour-specific bacterial growth for cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La culture sous abris avec des infrastructures de type grands tunnels est une nouvelle technologie permettant d’améliorer la production de framboises rouges sous des climats nordiques. L’objectif principal de ce projet de doctorat était d’étudier les performances de ces technologies (grands tunnels vs. abris parapluie de type Voen, en comparaison à la culture en plein champ) et leur effets sur le microclimat, la photosynthèse, la croissance des plantes et le rendement en fruits pour les deux types de framboisiers non-remontants et remontants (Rubus idaeus, L.). Puisque les pratiques culturales doivent être adaptées aux différents environnements de culture, la taille d’été (pour le cultivar non-remontant), l’optimisation de la densité des tiges (pour le cultivar remontant) et l’utilisation de bâches réfléchissantes (pour les deux types des framboisiers) ont été étudiées sous grands tunnels, abris Voen vs. en plein champ. Les plants cultivés sous grands tunnels produisent en moyenne 1,2 et 1,5 fois le rendement en fruits commercialisables que ceux cultivés sous abri Voen pour le cv. non-remontant ‘Jeanne d’Orléans’ et le cv. remontant ‘Polka’, respectivement. Comparativement aux framboisiers cultivés aux champs, le rendement en fruits des plants sous grands tunnels était plus du double pour le cv. ‘Jeanne d’Orléans’ et près du triple pour le cv. ‘Polka’. L’utilisation de bâches réfléchissantes a entrainé un gain significatif sur le rendement en fruits de 12% pour le cv. ‘Jeanne d’Orléans’ et de 17% pour le cv. ‘Polka’. La taille des premières ou deuxièmes pousses a significativement amélioré le rendement en fruits du cv. ‘Jeanne d’Orléans’ de 26% en moyenne par rapport aux framboisiers non taillés. Des augmentations significatives du rendement en fruits de 43% et 71% du cv. ‘Polka’ ont été mesurées avec l’accroissement de la densité à 4 et 6 tiges par pot respectivement, comparativement à deux tiges par pot. Au cours de la période de fructification du cv. ‘Jeanne d’Orléans’, les bâches réfléchissantes ont augmenté significativement la densité de flux photonique photosynthétique (DFPP) réfléchie à la canopée inférieure de 80% en plein champ et de 60% sous grands tunnels, comparativement à seulement 14% sous abri Voen. Durant la saison de fructification du cv. ‘Polka’, un effet positif de bâches sur la lumière réfléchie (jusqu’à 42%) a été mesuré seulement en plein champ. Dans tous les cas, les bâches réfléchissantes n’ont présenté aucun effet significatif sur la DFPP incidente foliaire totale et la photosynthèse. Pour le cv. ‘Jeanne d’Orléans’, la DFPP incidente sur la feuille a été atténuée d’environ 46% sous le deux types de revêtement par rapport au plein champ. Par conséquent, la photosynthèse a été réduite en moyenne de 43% sous grands tunnels et de 17% sous abris Voen. Des effets similaires ont été mesurés pour la DFPP incidente et la photosynthèse avec le cv. Polka. En dépit du taux de photosynthèse des feuilles individuelles systématiquement inférieur à ceux mesurés pour les plants cultivés aux champs, la photosynthèse de la plante entière sous grands tunnels était de 51% supérieure à celle observée au champ pour le cv. ‘Jeanne d’Orléans’, et 46% plus élevée pour le cv. ‘Polka’. Ces résultats s’expliquent par une plus grande (près du double) surface foliaire pour les plants cultivés sous tunnels, qui a compensé pour le plus faible taux de photosynthèse par unité de surface foliaire. Les températures supra-optimales des feuilles mesurées sous grands tunnels (6.6°C plus élevé en moyenne que dans le champ), ainsi que l’atténuation de la DFPP incidente (env. 43%) par les revêtements de tunnels ont contribué à réduire le taux de photosynthèse par unité de surface foliaire. La photosynthèse de la canopée entière était étroitement corrélée avec le rendement en fruits pour les deux types de framboisiers rouges cultivés sous grands tunnels ou en plein champ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) (Bignoniaceae), is a major environmental weed in Australia. Two distinct forms of this weed (‘long’ and ‘short’ pod), with differences in leaf morphology and fruit size, occur in Australia. The long pod form has only been reported in less than fifteen localities in the whole of south-east Queensland, while the short pod form is widely distributed in Queensland and New South Wales. This study sought to compare growth traits such as specific leaf area, relative growth rate, stem length, shoot/root ratio, tuber biomass and branching architecture between these forms. These traits were monitored under glasshouse conditions over a period of 18 months. Short pod exhibited higher values of relative growth rates, stem length, number of tubers and specific leaf area than long pod, but only after 10 months of plant growth. Prior to this, long and short pod did not differ significantly. Higher values for these traits have been described as characteristics of successful colonizers. Results from this study could partly explain why the short pod form is more widely distributed in Australia while long pod is confined to a few localities.