989 resultados para plane-parallel cavity
Resumo:
In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.
Resumo:
In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given by Eringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary condition v=a ω and its effect on the entire flow field. We have restricted our study to the case when Stokes' approximation is valid, i. e. slow motion for it is difficult to uncouple the equations in the most general case.
Resumo:
The Urey-Bradley force constants for the in-plane vibrations of the boric acid molecule are calculated using the Wilson's F-G matrix method. They are as follows: KO-H=5·23, KB-O=4·94, HBOH=0·36, {Mathematical expression}, F00=0·68 and FBH=0·98 in units of 105 dynes/cm. Using the force constants, the frequencies are recalculated and the calculated values agree with the observed values satisfactorily. The in-plane vibrational frequencies of deuterated boric acid are also calculated and again satisfactory agreement with the observed values is found.
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
The problem of an elastic quarter-plane with arbitrary loadings on the boundaries has been solved using a Fourier-integral approach.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) angstrom, except for the methyl H atoms. In the crystal structure, intermolecular C-H center dot center dot center dot O hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular pi-pi stacking interactions [centroid-centroid distances = 3.685 (2) and 3.697 (2) angstrom] are observed between the parallel triazole rings.
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
Based on the Aristotelian criterion referred to as 'abductio', Peirce suggests a method of hypothetical inference, which operates in a different way than the deductive and inductive methods. “Abduction is nothing but guessing” (Peirce, 7.219). This principle is of extreme value for the study of our understanding of mathematical self-similarity in both of its typical presentations: relative or absolute. For the first case, abduction incarnates the quantitative/qualitative relationships of a self-similar object or process; for the second case, abduction makes understandable the statistical treatment of self-similarity, 'guessing' the continuity of geometric features to the infinity through the use of a systematic stereotype (for instance, the assumption that the general shape of the Sierpiński triangle continuates identically into its particular shapes). The metaphor coined by Peirce, of an exact map containig itself the same exact map (a map of itself), is not only the most important precedent of Mandelbrot’s problem of measuring the boundaries of a continuous irregular surface with a logarithmic ruler, but also still being a useful abstraction for the conceptualisation of relative and absolute self-similarity, and its mechanisms of implementation. It is useful, also, for explaining some of the most basic geometric ontologies as mental constructions: in the notion of infinite convergence of points in the corners of a triangle, or the intuition for defining two parallel straight lines as two lines in a plane that 'never' intersect.
Resumo:
The paper presents simple graphical procedures for position synthesis of plane linkage mechanisms to generate functions of two independent variables. The procedures are based on point-position reduction and permit synthesis of the linkage to satisfy up to six arbitrarily selected precision positions.
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.