962 resultados para photonic integrated circuit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is centered around the study of electrical and thermal properties of certain selected photonic materials.We have studied the electrical conduction mechanism in various phases of certain selected photonic materials and those associated with different phase transitions occurring in them. A phase transition leaves its own impressions on the key parameters like electrical conductivity and dielectric constant. However, the activation energy calculation reveals the dominant factor responsible for conduction process.PA measurements of thermal diffusivity in certain other important photonic materials are included in the remaining part of the research work presented in this thesis. PA technique is a promising tool for studying thermal diffusivities of solid samples in any form. Because of its crucial role and common occurrence in heat flow problems, the thermal diffusivity determination is often necessary and knowledge of thermal diffusivity can intum be used to calculate the thermal conductivity. Especially,knowledge of the thermal diffusivity of semiconductors is important due to its relation to the power dissipation problem in microelectronic and optoelectronic devices which limits their performances. More than that, the thermal properties, especially those of thin films are of growing interest in microelectronics and microsystems because of the heat removal problem involved in highly integrated devices. The prescribed chapter of the present theis demonstrates how direct measurement of thermal diffusivity can be carried out in thin films of interest in a simple and elegant manner using PA techniques. Although results of only representative measurements viz; thermal diffusivity values in Indium, Aluminium, Silver and CdS thin films are given here, evaluation of this quantity for any photonic and / electronic material can be carried out using this technique in a very simple and straight forward manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanophotonics can be regarded as a fusion of nanotechnology and photonics and it is an emerging field providing researchers opportunities in fundamental science and new technologies. In recent times many new methodsand techniques have been developed to prepare materials at nanoscale dimensions. Most of these materials exhibit unique and interesting optical properties and behavior. Many of these have been found to be very useful to develop new devices and systems such as tracers in biological systems, optical limiters, light emitters and energy harvesters. This thesis presents a summary of the work done by the author in the field by choosing a few semiconductor systems to prepare nanomaterials and nanocomposites. Results of the study of linear and nonlinear optical properties of materials thus synthesized are also presented in the various chapters of this thesis. CdS is the material chosen here and the methods and the studies of the detailed investigation are presented in this thesis related to the optical properties of CdS nanoparticles and its composites. Preparation and characterization methods and experimental techniques adopted for the investigations were illustrated in chapter 2 of this thesis. Chapter 3 discusses the preparation of CdS, TiO2 and Au nanoparticles. We observed that the fluorescence behaviour of the CdS nanoparticles, prepared by precipitation technique, depends on excitation wavelength. It was found that the peak emission wavelength can be shifted by as much as 147nm by varyingthe excitation wavelengths and the reason for this phenomenon is the selective excitation of the surface states in the nanoparticles. This provided certain amount of tunability for the emission which results from surface states.TiO2 nanoparticle colloids were prepared by hydrothermal method. The optical absorption study showed a blue shift of absorption edge, indicating quantum confinement effect. The large spectral range investigated allows observing simultaneously direct and indirect band gap optical recombination. The emission studies carried out show four peaks, which are found to be generated from excitonic as well as surface state transitions. It was found that the emission wavelengths of these colloidal nanoparticles and annealed nanoparticles showed two category of surface state emission in addition to the excitonic emission. Au nanoparticles prepared by Turkevich method showed nanoparticles of size below 5nm using plasmonic absorption calculation. It was also found that there was almost no variation in size as the concentration of precursor was changed from 0.2mM to 0.4mM.We have observed SHG from CdS nanostructured thin film prepared onglass substrate by chemical bath deposition technique. The results point out that studied sample has in-plane isotropy. The relative values of tensor components of the second-order susceptibility were determined to be 1, zzz 0.14, xxz and 0.07. zxx These values suggest that the nanocrystals are oriented along the normal direction. However, the origin of such orientation remains unknown at present. Thus CdS is a promising nonlinear optical material for photonic applications, particularly for integrated photonic devices. CdS Au nanocomposite particles were prepared by mixing CdS nanoparticles with Au colloidal nanoparticles. Optical absorption study of these nanoparticles in PVA solution suggests that absorption tail was red shifted compared to CdS nanoparticles. TEM and EDS analysis suggested that the amount of Au nanoparticles present on CdS nanoparticles is very small. Fluorescence emission is unaffected indicating the presence of low level of Au nanoparticles. CdS:Au PVA and CdS PVA nanocomposite films were fabricated and optically characterized. The results showed a red-shift for CdS:Au PVA film for absorption tail compared to CdS PVA film. Nonlinear optical analysis showed a huge nonlinear optical absorption for CdS:Au PVA nanocomposite and CdS:PVA films. Also an enhancement in nonlinear optical absorption is found for CdS:Au PVA thin film compared to the CdS PVA thin film. This enhancement is due to the combined effect of plasmonic as well as excitonic contribution at high input intensity. Samples of CdS doped with TiO2 were also prepared and the linear optical absorption spectra of these nanocompositeparticles clearly indicated the influence of TiO2 nanoparticles. TEM and EDS studies have confirmed the presence of TiO2 on CdS nanoparticles. Fluorescence studies showed that there is an increase in emission peak around 532nm for CdS nanoparticles. Nonlinear optical analysis of CdS:TiO2 PVA nanocomposite films indicated a large nonlinear optical absorption compared to that of CdS:PVA nanocomposite film. The values of nonlinear optical absorption suggests that these nanocomposite particles can be employed for optical limiting applications. CdSe-CdS and CdSe-ZnS core-shell QDs with varying shell size were characterized using UV–VIS spectroscopy. Optical absorption and TEM analysis of these QDs suggested a particle size around 5 nm. It is clearly shown that the surface coating influences the optical properties of QDs in terms of their size. Fluorescence studies reveal the presence of trap states in CdSe-CdS and CdSe- ZnS QDs. Trap states showed an increase as a shell for CdS is introduced and increasing the shell size of CdS beyond a certain value leads to a decrease in the trap state emission. There is no sizeable nonlinear optical absorption observed. In the case of CdSe- ZnS QDs, the trap state emission gets enhanced with the increase in ZnS shell thickness. The enhancement of emission from trap states transition due to the increase in thickness of ZnS shell gives a clear indication of distortion occurring in the spherical symmetry of CdSe quantum dots. Consequently the nonlinear optical absorption of CdSe-ZnS QDs gets increased and the optical limiting threshold is decreased as the shell thickness is increased in respect of CdSe QDs. In comparison with CdSe-CdS QDs, CdSe-ZnS QDs possess much better optical properties and thereby CdSe-ZnS is a strong candidate for nonlinear as well as linear optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schottky barrier diodes have been integrated into on-chip rectangular waveguides. Two novel techniques have been developed to fabricate diodes with posts suitable for integration into waveguides. One technique produces diodes with anode diameters of the order of microns with post heights from 90 to 125 microns and the second technique produces sub-micron anodes with post heights around 20 microns. A method has been developed to incorporate these structures into a rectangular waveguide and provide a top contact onto the anode which could be used as an I.F. output in a mixer circuit. Devices have been fabricated and D.C. characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO2 (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO2, in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The architecture was implemented in a prototype of imager with 32x32 pixel array fabricated in AMS CMOS 0.35νm and was characterized for sensitivity and color response. The pixel is composed of an n+/psub photodiode, a comparator and a D flip-flop having 16% fill-factor and 30νmx26νm dimensions. The multisampling architecture requires only a 1 bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The advantage is that the number of transistors in the pixel is low, saving area and providing higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operation in video mode with 10 bits. Also, we present analysis for the impact of comparator offset voltage in the fixed pattern noise. Copyright 2007 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a heuristic model for integrated planning of primary distribution network and secondary distribution circuits is proposed. A Tabu Search (TS) algorithm is employed to solve the planning of primary distribution networks. Evolutionary Algorithms (EA) are used to solve the planning model of secondary networks. The planning integration of both networks is carried out by means a constructive heuristic taking into account a set of integration alternatives between these networks. These integration alternatives are treated in a hierarchical way. The planning of primary networks and secondary distribution circuits is carried out based on assessment of the effects of the alternative solutions in the expansion costs of both networks simultaneously. In order to evaluate this methodology, tests were performed for a real-life distribution system taking into account the primary and secondary networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.