811 resultados para pelvic floor muscle training
Resumo:
The aim of this study was to examine the influence of moderate swimming training on the GH/IGF-1 growth axis and tibial mass in diabetic rats. Male Wistar rats were allocated to one of four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced with alloxan (35 mg/kg b.w.). The training program consisted of a 1 h swimming session/day with a load corresponding to 5% of the b.w., five days/week for six weeks. At the end of the training period, the rats were sacrificed and blood was collected for quantification of the serum glucose, insulin, GH, and IGF-1 concentrations. Samples of skeletal muscle were used to quantify the IGF-1 pepticle content. The tibias were collected to determine their total area, length and bone mineral content. The results were analyzed by ANOVA with P < 0.05 indicating significance. Diabetes decreased the serum levels of GH and IGF-1, as well as the tibial length, total area and bone mineral content in the SD group (P < 0.05). Physical training increased the serum IGF-1 level in the TC and TD groups when compared to the sedentary groups (SC and SD), and the tibial length, total area and bone mineral content were higher in the TD group than in the SD group (P < 0.05). Exercise did not alter the level of IGF-1 in gastrocnemius muscle in nondiabetic rats, but the muscle IGF-1 content was higher in the TD group than in the SD group. These results indicate that swimming training stimulates bone mass and the GH/IGF-1 axis in diabetic rats. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Tegtbur et al. [23] devised a new method able to estimate the intensity at maximal lactate steady state termed lactate minimum test. According to Billat et al. [7], no studies have yet been published on the affect of training on highest blood lactate concentration that can be maintained over time without continual blood lactate accumulation. Therefore, the aim of the present study was to verify the effect of soccer training on the running speed and the blood lactate concentration (BLC) at the lactate minimum test (Lac(min)). Thirteen Brazilian male professional soccer players, all members of the same team playing at National level, volunteered for this study. Measurements were carried out before (pre) and after (post) eight weeks of soccer training. The Lac(min) test was adapted to the procedures reported by Tegtbur et al. [23]. The running speed at the Lac(min) test was taken when the gradient of the line was zero. Differences in running speed and blood lactate concentration at the Lac(min) test before (pre) and after (post) the training program were evaluated by Student's paired t-test. The training program increased the running speed at the Lac(min) test (14.94 +/- 0.21 vs. 15.44 +/- 0.42* km(.)h(-1)) and the blood lactate concentration (5.11 +/- 2.31 vs. 6.93 +/- 1.33* mmol(.)L(-1)). The enhance in the blood lactate concentration may be explained by an increase in the lactate/H+ transport capacity of human skeletal muscle verified by other authors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thyrotoxicosis, a condition in which there is an excessive amount of circulating thyroid hormones, leads to reduced glycogen content in different tissues. In this study we analyzed the effects of aerobic swimming training on liver, heart, and skeletal muscle glycogen content in experimentally induced thyrotoxicosis. Wistar male rats were divided into euthyroid sedentary (ES, n = 12), euthyroid trained (ET, n = 11), thyrotoxic sedentary (TS, n = 12), and thyrotoxic trained (TT, n = 10) groups. Thyrotoxic groups received daily i.p. doses of T4 (sodium levothyroxine, 25 mu g/100 g body mass) through the experimental period, and trained groups swam for 1 h at 80% of the aerobic-anaerobic transition intensity, 5 days/week for 4 weeks. Heart and liver glycogen stores were similar to 30% lower in T4 treated compared with nontreated groups, but were not changed by training status. on the other hand, glycogen content in mixed fiber type gastrocnemius of TT was 1.5- to 2.3-fold greater than those in other groups, whereas no significant differences were found for the slow soleus muscle. Increased gastrocnemius but not soleus, liver, or heart glycogen indicates that in mild long-term thyrotoxicosis chronic swimming affects glycogen stores in a tissue-specific manner.
Resumo:
Oliveira, AS, Greco, CC, Pereira, MP, Figueira, TR, de Araujo Ruas, VD, Goncalves, M, and Denadai, BS. Physiological and neuromuscular profile during a Bodypump session: acute responses during a high-resistance training session. J Strength Cond Res 23(2): 579-586, 2009-The main purposes of this study were 1) to describe and to compare blood lactate ([La]), heart rate (HR), and electromyographic (EMG) parameters during high-repetition training sessions (HRTSs), 2) to analyze the influence of physical fitness levels in these parameters, and, 3) to analyze the relationship between metabolic ([La]) and neuromuscular (EMG) responses during the HRTS. Fifteen healthy untrained women (21.7 +/- 2.1 years) performed an HRTS called Bodypump for 1 hour, which incorporated the use of variable free weights and high repetitions in a group setting. This session involved 10 music selections (M1-M10) containing resistive exercises for different muscle groups. After music selections 2 (M2), 4 (M4), 6 (M6), 7 (M7), and 9 (M9), [La], HR, and EMG (vastus medialis [VM], vastus lateralis [VL], iliocostalis lumborum [IC], and longissimus thoracis <) were determined. The [La] (M2, 4.00 +/- 1.45 mM; M7, 5.02 +/- 1.73 mM) and HR (M2, 153.64 +/- 18.89 bpm; M7, 16.14 +/- 20.14 bpm) obtained at M2 and M7 were similar but were significantly higher than the other moments of the session. However, EMG (root mean square [RMS]) at M2 (VL, VM, and LT) was lower than at M7. There was no significant correlation of strength and aerobic physical fitness with [La], RMS. In the same way, there was no significant correlation of [La] with RMS at M2 and M7. on the basis of our data, we can conclude that metabolic, cardiovascular, and EMG variables present different and independent behavior during an HRTS. Accordingly, for neuromuscular conditions during HRTS, it seems to be enough to induce improvement in the muscular strength of inferior limbs in untrained subjects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To investigate the alterations of glucose homeostasis and variables of the insulin-like growth factor-I (IGF- 1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg(-1) b.w.). Training program consisted of swimming 5 days week(-1), 1 h day(-1), during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF-1, and IGF binding protein-3(IGFBP-3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF-1 content. Diabetes decreased serum GH, IGF-1, IGFBP-3, liver glycogen, and cerebellum IGF-1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF-1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF-1 concentrations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was designed to determine the exercise intensity equivalent to the metabolic aerobic/anaerobic transition of alloxan diabetic rats, through lactate minimum test (LMT), and to evaluate the effects of swimming exercise at this intensity (LM) on the glucose and protein metabolism of these animals. Adult male Wistar rats received alloxan (SD, alloxan-injected rats that remained sedentary) intravenously (30 mg kg(-1) body weight) for diabetes induction. As controls (SC, vehicle-injected rats that remained sedentary), vehicle-injected rats were utilized. Two weeks later, the animals were submitted to oral glucose tolerance test (oGTT) and LMT. After the tests, some of the animals were submitted to swimming exercise training [TC (vehicle-injected rats that performed a 6-week exercise program) and TD (alloxan-injected rats that performed a 6-week exercise program)] for I h day(-1), 5 days week(-1), with an overload equivalent to LM determined by LMT, for 6 weeks. At the end of the experiment, the animals were submitted to a second LMT and oGTT, and blood and skeletal muscle assessments (protein synthesis and degradation in the isolated soleus muscle) were made. The overload equivalent to LM at the beginning of the experiment was lower in the SID group than in the SC group. After training, the overload equivalent to LM was higher in the TC and TD groups than in the SC and SD groups. The blood glucose of TD rats during oGTT was lower than that of SD rats. Protein degradation was higher in the SD group than in other groups. We conclude that LMT was sensitive to metabolic and physiologic alterations caused by uncontrolled diabetes. Training at LM intensity improved aerobic condition and the glucose and protein metabolism of alloxan diabetic rats. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aim. To investigate the effects of physical training associated to dexamethasone administration in carbohydrate metabolism and adrenocorticotrophic hormone (ACTH) release. Materials and methods. Young Wistar rats were divided into four groups: sedentary control (CS), sedentary dexanzethasone (DxS), trained control (CT) and trained dexamethasone (DxT). The rats were submitted to swimming training associate to administration of dexamethasone for ten weekends. Before sacrifice the rats received Subcutaneous insulin to calculate the maximum decreased in blood glucose. Venous blood was sampled obtained at the end experiment period to determine glucose, insulin, free fatty acids (FFA) and ACTH. Gastrocnemius and liver tissue samples were used to determination glycogen, and adipose epididimal tissue was used to measured the weight. Results. Dexamethasone administration provoke insulin resistance and the physical training reverted this aspect. Training promoted increase in muscle and liver glycogen store and a high utilization of FFA. Moreover the dexamethasone provoke decreased of ACTH release in response to acute exercise, showing marked differences in the functioning of the hypothalamy pituitary-adrenal (HPA) axis between groups of rats. Conclusions. a) Low-dose of dexamethasone promote several side effects in metabolism intermediary and chronic exposure to steroid was associated with insulin resistance; b) the regular swimming exercise promoted increased insulin sensitiviry Therefore. exercise can override the dexametasone negative feedback of the HPA axis activation in rats.
Resumo:
Malnutrition is a common health problem in developing countries and is associated with alterations in glucose metabolism. In the present study we examine the effects of chronic aerobic exercise on some aspects of glucose metabolism in protein-deficient rats. Two groups of adult rats (90 days old) were used: Normal protein group (17%P)- kept on a normal protein diet during intra-uterine and postnatal life and Low protein group (6%P)- kept on a low protein diet during intrauterine and post natal life. After weaning (21 days old), half of the 17%P and 6%P rats were assigned to a Sedentary (Sed) or an Exercise-trained (Exerc = swimming, 1 hr/day, 5 days/week, supporting an overload of 5% of body weight) subgroup. The area under blood glucose concentration curve (Delta G) after an oral glucose load was higher in 17%P Sed rats (20%) than in other rats and lower in 6%P Exerc (11%) in relation to 6% Sed rats. The post-glucose increase in blood insulin (Delta I) was also higher in 17%P Sed (9%) than in other rats. on the other hand, the glucose disappearance rate after exogenous subcutaneous insulin administration (Kitt) was lower in 17%P Sed rats (66%) than in other rats. Glucose uptake by soleus muscle was higher in Exerc rats (30%) than in Sed rats. Soleus muscle glycogen synthesis was reduced in 6%P Sed rats (41%) compared to 17%P Sed rats but was restored in 6%P Exerc rats. Glycogen concentration was elevated in Exerc (32%) rats in comparison to Sed rats. The present results indicate that glucose-induced insulin release is reduced in rats fed low protein diet. This defect is counteracted by an increase in the sensitivity of the target tissues to insulin and glucose homeostasis is maintained. This adaptation allows protein deficient rats to preserve the ability to appropriately adapt to aerobic physical exercise training. (C) 2000 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)