931 resultados para peak symmetry
Resumo:
This paper discusses the calculation of electron impact collision strengths and effective collision strengths for iron peak elements of importance in the analysis of many astronomical and laboratory spectra. It commences with a brief overview of R-matrix theory which is the basis of computer programs which have been widely used to calculate the relevant atomic data used in this analysis. A summary is then given of calculations carried out over the last 20 y for electron collisions with Fe II. The grand challenge, represented by the calculation of accurate collision strengths and effective collision strengths for this ion, is then discussed. A new parallel R-matrix program PRMAT, which is being developed to meet this challenge, is then described and results of recent calculations, using this program to determine optically forbidden transitions in e- – Ni IV on a Cray T3E-1200 parallel supercomputer, are presented. The implications of this e- – Ni IV calculation for the determination of accurate data from an isoelectronic e- – Fe II calculation are discussed and finally some future directions of research are reviewed.
Resumo:
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H2(v = 0, j = 0) ? HF(v' = 2, j' = 0) + H reaction on the Stark–Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.
Resumo:
We propose some extra rules to add to the well-known Sudoku puzzle and present an argument to justify their inclusion. The rules mean that puzzles can be created with fewer cells completed initially yet which still have only one solution. We have created a Web-based program which can be used to generate and solve both standard and extended (Complete) puzzles.
Resumo:
In this paper, I argue that there is an inconsistency between two presentist doctrines: that of ontological symmetry and asymmetry of fixity. The former refers to the presentist belief that the past and future are equally unreal. The latter refers to the A-Theoretic intuition that the past is closed or actual, and the future is open or potential. My position in this paper is that the presentist is unable to account for the temporal asymmetry that is so fundamentally a part of her theory. In Section I, I briefly outline a recent defence of presentism due to Craig, and argue that a flaw in this defence highlights the tension between the presentist's doctrines of ontological symmetry and asymmetry of fixity. In Section II, I undertake an investigation, on the presentist's behalf, in order to determine whether she is capable of reconciling these two doctrines. In the course of the investigation, I consider different asymmetries, other than that of ontology, which might be said fundamentally to constitute temporal asymmetry, and the asymmetry of fixity in particular. In Section III, I also consider whether the presentist is able to avail herself of some of the standard B-Theoretic accounts of the asymmetry of fixity, and argue that she cannot. Finally, I conclude that temporal asymmetry cannot be accounted for (or explained) other than through the postulation of an ontological asymmetry.