887 resultados para panel data with spatial effects
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.
Resumo:
Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.
Resumo:
Degree in Marine Sciences. Faculty of Marine Sciences, University of Las Palmas de Gran Canaria. Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas
Resumo:
In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
In Sub-Saharan Africa, non-democratic events, like civil wars and coup d'etat, destroy economic development. This study investigates both domestic and spatial effects on the likelihood of civil wars and coup d'etat. To civil wars, an increase of income growth is one of common research conclusions to stop wars. This study adds a concern on ethnic fractionalization. IV-2SLS is applied to overcome causality problem. The findings document that income growth is significant to reduce number and degree of violence in high ethnic fractionalized countries, otherwise they are trade-off. Income growth reduces amount of wars, but increases its violent level, in the countries with few large ethnic groups. Promoting growth should consider ethnic composition. This study also investigates the clustering and contagion of civil wars using spatial panel data models. Onset, incidence and end of civil conflicts spread across the network of neighboring countries while peace, the end of conflicts, diffuse only with the nearest neighbor. There is an evidence of indirect links from neighboring income growth, without too much inequality, to reduce the likelihood of civil wars. To coup d'etat, this study revisits its diffusion for both all types of coups and only successful ones. The results find an existence of both domestic and spatial determinants in different periods. Domestic income growth plays major role to reduce the likelihood of coup before cold war ends, while spatial effects do negative afterward. Results on probability to succeed coup are similar. After cold war ends, international organisations seriously promote democracy with pressure against coup d'etat, and it seems to be effective. In sum, this study indicates the role of domestic ethnic fractionalization and the spread of neighboring effects to the likelihood of non-democratic events in a country. Policy implementation should concern these factors.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
Background. To explore effects of a health risk appraisal for older people (HRA-O) program with reinforcement, we conducted a randomized controlled trial in 21 general practices in Hamburg, Germany. Methods. Overall, 2,580 older patients of 14 general practitioners trained in reinforcing recommendations related to HRA-O-identified risk factors were randomized into intervention (n = 878) and control (n = 1,702) groups. Patients (n = 746) of seven additional matched general practitioners who did not receive this training served as a comparison group. Patients allocated to the intervention group, and their general practitioners, received computer-tailored written recommendations, and patients were offered the choice between interdisciplinary group sessions (geriatrician, physiotherapist, social worker, and nutritionist) and home visits (nurse). Results. Among the intervention group, 580 (66%) persons made use of personal reinforcement (group sessions: 503 [87%], home visits: 77 [13%]). At 1-year follow-up, persons in the intervention group had higher use of preventive services (eg, influenza vaccinations, adjusted odds ratio 1.7; 95% confidence interval 1.4–2.1) and more favorable health behavior (eg, high fruit/fiber intake, odds ratio 2.0; 95% confidence interval 1.6–2.6), as compared with controls. Comparisons between intervention and comparison group data revealed similar effects, suggesting that physician training alone had no effect. Subgroup analyses indicated favorable effects for HRA-O with personal reinforcement, but not for HRA-O without reinforcement. Conclusions. HRA-O combined with physician training and personal reinforcement had favorable effects on preventive care use and health behavior.
Does published orthodontic research account for clustering effects during statistical data analysis?
Resumo:
In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysis.
Resumo:
The paper considers panel data methods for estimating ordered logit models with individual-specific correlated unobserved heterogeneity. We show that a popular approach is inconsistent, whereas some consistent and efficient estimators are available, including minimum distance and generalized method-of-moment estimators. A Monte Carlo study reveals the good properties of an alternative estimator that has not been considered in econometric applications before, is simple to implement and almost as efficient. An illustrative application based on data from the German Socio-Economic Panel confirms the large negative effect of unemployment on life satisfaction that has been found in the previous literature.
Resumo:
In this paper we introduce technical efficiency via the intercept that evolve over time as a AR(1) process in a stochastic frontier (SF) framework in a panel data framework. Following are the distinguishing features of the model. First, the model is dynamic in nature. Second, it can separate technical inefficiency from fixed firm-specific effects which are not part of inefficiency. Third, the model allows one to estimate technical change separate from change in technical efficiency. We propose the ML method to estimate the parameters of the model. Finally, we derive expressions to calculate/predict technical inefficiency (efficiency).
Resumo:
In a traditional system of exogamous and patrilocal marriage prevalent in much of Sub-Saharan Africa, when she marries, a rural woman typically leaves her kin to reside with her husband living outside her natal village. Since a village that allows a widow to inherit her late husband's land can provide her with old age security, single females living outside the village are more likely to marry into the village. Using a natural experimental setting, provided by the longitudinal household panel data drawn from rural Tanzania for the period from 1991 to 2004, during which several villages that initially banned a widow's land inheritance removed this discrimination, this study provides evidence in support of this view, whereby altering a customary land inheritance rules in a village in favor of widows increased the probability of males marrying in that village. This finding suggests that providing rural women with old age protection (e.g., insurance, livelihood protection) has remarkable spatial and temporal welfare effects by influencing their decision to marry.